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Assistive applications for orientation and mobility promote independence for people with visual impairment
(PVI). While typical design and evaluation of such applications involves small-sample iterative studies, we
analyze large-scale longitudinal data from a geographically diverse population. Our publicly released dataset
from iMove, a mobile app supporting orientation of PVI, contains millions of interactions by thousands of
users over a year.

Our analysis: (i) examines common functionalities, se�ings, assistive features, and movement modalities
in iMove dataset, and (ii) discovers user communities based on interaction pa�erns. We �nd that the most
popular interaction mode is passive, where users receive more noti�cations, o�en verbose, while in motion
and perform fewer actions. �e use of built-in assistive features such as enlarged text indicate a high presence
of users with residual sight. Users fall into three distinct groups: C1) users interested in surrounding points
of interest, C2) users interacting in short bursts to inquire about current location, and C3) users with long
active sessions while in motion. iMove was designed with C3 in mind and one strength of our contribution is
providing meaningful semantics for unanticipated groups, C1 and C2. Our analysis reveals insights that can
be generalized to other assistive orientation and mobility applications.
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1 INTRODUCTION
To acquire information about their surroundings, people with visual impairment (PVI) rely to a larger
extent on other senses to compensate for sight loss. Auditory, tactile, olfactory, thermal, vestibular,
and other non-visual inputs can help PVI create a spatial mental model of the environment. However,
non-visual exploration is characterized by a shorter sensory horizon [35] and lower information
throughput [20]. �us, acquiring spatial information and navigating based on non-visual sensing is
slower and more cognitively demanding [7].

Di�erent types of visual impairment a�ect access to spatial information di�erently. For example,
while a sighted person can explore a great portion of the surroundings with a glance, individuals
with tunnel vision can scan only a small portion of the surroundings at a time [17]. �is sequential
access to visual information can slow down the formation of a spatial mental model, leading to
danger in the presence of fast moving vehicles that cannot be quickly identi�ed and tracked. Instead,
a reduced visual acuity provides concurrent sensing in all directions, but the quality of the formed
image is limited. �is diminishes access to distant or small visual cues, which need to be physically
approached for exploration.

Assistive technology for navigation can address these challenges by supplementing or substituting
the orientation and navigation capabilities of PVI.�e solutions proposed in the literature, surveyed
in [20, 21], adopt many di�erent technological approaches, such as laser canes, sonar devices, and
GPS localization. To design and evaluate their assistive technology, researchers typically rely on
supervised user studies. Formative studies (e.g. [50]) are used to shape the design direction and gain
insight of the user base needs and requirements. Wizard-of-Oz experiments (e.g. [13]), where the
experimenter (“wizard“) simulates the behavior of a system behind the scenes, allow investigation
with prototype applications or, in some cases, even without working prototypes. Evaluation studies
(e.g. [33]) can provide information on the e�cacy and user satisfaction of the technology proposed.
�ese experiments can be conducted in controlled conditions, and the participants’ characteristics
may be prede�ned or are known in advance.

One major limitation of supervised user studies is that they are constrained to speci�c scenarios
or laboratory environments. �e limited number and variety of se�ings that may be reproduced
do not re�ect the diversity of real-world situations. Additionally, user studies performed under
observation may be a�ected by the Hawthorne e�ect [1], where participants behave di�erently
due to their awareness of being observed. More importantly, in supervised studies, the participant
pool is usually geographically constrained to the proximity of the physical location where the
experiment is conducted. �is can impair user representativeness and lead to cultural, gender or
age related bias. In accessibility research, where the number of locally available users may be very
limited, this issue is more severe, making it more challenging to scale the user studies in terms of
number of involved subjects and study length [20].
In contrast to supervised studies, we perform extensive analysis of remotely collected usage

data from an assistive application that supports orientation and mobility of PVI. �is approach
allows us to capture the behavior of a vast and diversi�ed user pool in the wild without observation
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bias. Speci�cally, we investigate users’ behavior through their interactions with iMove1, a GPS-
based mobile application that supports outdoor orientation of PVI. iMove provides information
about a user’s surroundings, such as nearby landmarks, current address, and their notes related
to the location. �is information assists the user during way-�nding, and can help the user
construct a mental map of their environment. It is provided both visually and through native
system accessibility tools available on iOS, and therefore appeals to users having di�erent visual
impairments or blindness, as described in Section 3.1.

1.1 Motivation for this Article
Our analysis primarily aims at providing a deeper understanding of prolonged real-world inter-
actions, observed between users and an assistive technology such as iMove. Speci�cally, we are
interested in the most frequently accessed functionalities, the assistive technology features acti-
vated on users’ mobile devices while interacting with iMove, their preferred se�ings, and more
importantly the discovery of prevalent interaction pa�erns across users. To this end, we perform
automatic clustering of users into groups that adopt diverse usage strategies while interacting with
iMove, and we highlight behaviors common among the members of the identi�ed groups. We
also investigate users’ mobility status while using iMove, and we discover common behaviors that
characterize our users. For example, we notice that users prefer to actively interact with the app
while stationary or on a vehicle, while they prefer just receiving noti�cations while walking.

One motivation for this work is that knowledge of how users habitually interact with the ap-
plication may be used to improve the existing system capabilities, adapt default se�ings to be�er
accommodate di�erent groups of end users, and examine data-driven personalization approaches
similar to [26]. Moreover, we believe that these results also provide insights for future mobility
assistance applications. For example, the identi�cation of a major cluster in our initial analysis [27],
where users sporadically interact with iMove just to con�rm their location, was one of the inspi-
rations behind the virtual navigation in [22]. We suspected that those users already possessed
a mental representation of their environment and used iMove for con�rmation purposes. �e
goal of [22] was to help users build these mental models a priori while virtually exploring a new
environment.
Like other research groups (discussed in Section 2.3 and more extensively in [19, 20]), we are

interested in supporting the orientation and mobility of PVI both in outdoor [31, 32] and indoor
environments [4, 5]. While these environments may pose di�erent challenges to PVI, e.g. �ner-
grained accuracy required in indoor areas [4], their user interfaces and interactions inherently
share similarities and many researchers (e.g. [43, 52]) are working on integrated solutions that
seamlessly support both. �erefore, another motivation for this article is to provide real-world
longitudinal data, analysis methods, and insights from observations that can help formulate testable
hypotheses as well as allow comparisons by future work in this area.

1.2 Overview of this Article
For the analysis of iMove usage data, we collected a dataset, described in Section 3, containing
3, 784, 700 records of interaction between 61, 715 users and iMove over a period of 15 months. Using
both inferential and exploratory methods, in Section 4 we examine commonly used functionalities,
preferred se�ings, movement modalities, and the relationship between assistive iOS features with
iMove-user interaction. We perform unsupervised discovery of user clusters based on common
behavior pa�erns in Section 5. For this purpose we employ natural language processing and

1 h�ps://itunes.apple.com/us/app/imove/id593874954
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machine learning methods. A discussion on the �ndings, limitations, and future work is included
in Section 6.

In this paper we extend our previous work [27] by introducing the following contributions:

• We expand the analysis of user preferences and user behavior with iMove to include a much
longer time span. �e initial iMove dataset comprised 5 months of the user interaction
logs with the system, totalling 771, 975 records, while the new dataset contains 3, 784, 700
records, collected for over 15 months.

• We re�ne the detected user clusters into more descriptive sub-cluster by performing
hierarchical clustering and we explore dimensionality reduction approaches to further
improve our clustering quality and preserve an interpretable feature space.

• We collect and analyze new data related to interface accessibility features activated by the
user on the mobile device. Based on this data, we segment the users in di�erent visual
impairment categories. We also collect data about the user’s speed and movement modality
(e.g., stationary, walking, on a vehicle).

• We investigate the relations between the identi�ed user clusters and the new movement
modality information, as well as the new visual impairment classi�cation. We also investi-
gate the link between user preferences and the automatically detected clusters. �e results
could further inform decisions for tailoring the app to diverse user groups, developing
future improvements of the so�ware, or guiding the design process of similar assistive
tools.
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2 RELATEDWORK
2.1 Remote Evaluation of Assistive Technologies
Understanding user behavior during interactions with a so�ware application is of paramount
importance for evaluating the application’s e�ectiveness, for guiding the iterative design process,
and for informing the design of similar applications. For the evaluation of assistive technologies,
conducting behavioral studies over long periods of time and with large samples of participants
with disabilities is challenging. Instead, studies are o�en conducted with a small number of users
in a controlled environment [4, 5, 31, 32, 36]. �us, only a few contributions in the �eld of assistive
technologies adopt methodologies involving analysis of collected real-world usage data and o�en
their participants’ demographics are known a priori or collected through questionnaires.
Bigham et al. propose the WebinSitu system to automatically collect user actions during web

browsing by PVI [10]. Authors argue for the importance of conducting remote evaluations by
observing that it is hard to replicate in the lab the various assistive technologies and con�gurations
normally used by blind users. �is is in common with our approach but we also observe that remote
evaluation is even more important with mobile applications, as in this case it is even harder to
replicate the context of use such as a diverse outdoor environment.
In [23], log data from real-world tasks are collected to assess the pointing problems of older

adults and individuals with motor impairment. Authors argue that laboratory data may not be
representative of natural behaviour for a number of reasons, including the fact that subjects are
observed, task can be unrealistic, and tools are unfamiliar to the subjects. Authors hence recognize
the bene�ts of remote evaluations, but they also identify two main challenges: to interpret user
intent and to segment real-world data. �ese challenges are not present in laboratory studies, in
which the users are generally assigned tasks with a clear objective that can be separated. �is is
not the case when data is collected “in the wild”; these challenges also arose in our research and
are further discussed in Section 6.2.
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Another example of remote data acquisition is presented by Riboni et al. [44] with the aim of
detecting mild cognitive impairment. �e paper describes the installation of a number of sensors
in a smart home where the activities of an elderly woman were monitored for 55 days to detect
behavioural anomalies. Authors observe that, due to privacy concerns, it was not possible to directly
observe the execution of activities. Similarly, privacy issues arose while designing data collection
in iMove and for this reason any re-identifying information (including location and user notes)
was not logged.

Similar to this prior work, our contribution adopts a remote data-acquisition technique that
makes it possible to record natural interactions of iMove users. One important di�erence to
prior work is that our contribution presents tests conducted on a di�erent scale. For example,
the number of subjects involved in the remote tests in the three papers presented above is 20, 6
and 1, respectively; our work, as discussed in the next section, considers thousands of subjects.
Furthermore, WebinSitu considers a total of 325 hours of use, while we consider a total of about
5, 000. �is di�erence in scale resides in subjects’ recruitment and motivations. Indeed, an explicit
recruitment process was required in the three studies above and, in the case of WebinSitu, subjects
were paid to participate. Instead, we rely on the fact that subjects use iMove because it provides an
useful service and, incidentally (from the user’s point of view), it also logs usage data. While this
facilitates collection of usage data, it poses certain challenges, such as collecting user demographics.

2.2 Behavior Analysis on Large-Scale Datasets
For human-computer interaction studies that involve broader participant pools, behavior analysis
on large-scale data is adopted more frequently (e.g. [12, 16, 18]). �ese analyses o�en combine
data-driven approaches from many �elds such as classi�cation, clustering, and time-series analysis
from machine learning [28, 34, 48], sentiment analysis from natural language processing [38, 48],
and community detection from network analysis [42].
For example, remotely collected large-scale smartphone usage data reveal user interactions

with mobile applications across the day span [12, 18]. Similar to our analysis, the interactions
were considered in sequence. However, these sequences were more coarse-grained and captured
transitions between application categories. Inspired by their preliminary results on the impact of
location and movement modality we extended the iMove dataset with motion sensing data such as
walking, automotive, running and analyzed user behavior in this context (Section 4.3). However,
due to privacy concerns iMove data did not include information on user location, a popular feature
to cluster users ([28], [42]).
�e work of Wang et al., 2016 [48] is the closest to our analysis, where similarity among

social network users is detected with natural language processing techniques similar to document
clustering. Speci�cally, users are clustered based on their sequences of clicks. �en the most
common pa�erns, short subsequences of those clicks among users within the same cluster compared
to users outside the cluster, are used to interpret cluster formation. We extend this approach by
incorporating the notion of a session based on an inactivity threshold (as in Meier et al. [34]). While
alternative techniques that are tolerant to speci�c forms of permutable, redundant and omi�able
user-interaction pa�erns within sequences have been recently proposed [16], for comparison
purposes we follow a similar approach to our initial analysis [27].

2.3 Supporting Orientation and Navigation of PVI
PVI o�en learn, through O&M training [29, 49], to adopt sophisticated navigation strategies to safely
sense and traverse the surrounding environment. Prior literature [45, 47] in cognitive sciences
related to spatial representation and navigation by PVI highlights that the way-�nding capabilities
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among sighted, early blind, and late blind individuals are similar, but individuals o�en rely on
profoundly di�erent preferred navigation strategies. �us, Shinazi et al. [45] argue that orientation
and mobility performance in diverse individuals should not be evaluated using some prede�ned
navigation strategies. Instead, for a fair comparison, each participant should be able to rely on the
most appropriate and familiar set of navigation strategies.
In addition to O&M training, many diverse mobility assistive tools have been proposed to

support the orientation and navigation capabilities of PVI. Environment augmentations, such
as tactile paving [24] or audio cues near pedestrian crossings [40], provide sensory substitution
mechanisms for visual cues within the environment and help PVI localize themselves and maintain
orientation [29]. Carried sensing instruments expand the sensory horizon of the user by detecting
cues outside of their haptic proximity and therefore help them to learn the structure of their
surroundings [29]. �is category includes a white cane, ultrasonic sensing of obstacles [41],
computer vision based detection of visual cues [2, 6, 31, 32], and GPS location based services such
as iMove (See Section 3.1). Mixed approaches couple environment augmentations with carried
sensing devices. For example, the NavCog [3–5] system relies on Bluetooth beacons installed in
the environment, sensed by a smartphone carried by the user.
�e discussion on adopted and preferred navigation strategies among PVI raises the question

whether similarities in these strategies also lead to similarities across user interaction with support-
ive orientation and navigation technologies. Motivated by this question, we investigate approaches,
similar to Wang et al. [48], that automatically discover user clusters based on streams of interactions
with iMove. Moreover, we examine how well these clusters capture users’ se�ings preferences
in an assistive orientation application when compared to their inferred visual impairment (e.g.,
blind versus low vision). However, the link between these clusters and underlying user-adopted
navigation strategies is beyond the scope of this article since the estimation of these navigation
strategies can not be captured at large without raising privacy concerns.

3 IMOVE APP AND DATASET
We present the iMove app (Section 3.1), its remote logging system (Section 3.2), and the collected
data with descriptive statistics (Section 3.3).

3.1 iMoveApp
iMove is an iOS application designed to support orientation of PVI.�e app informs users about
outdoor geo-referenced information such as current address, nearby Points Of Interest (POIs),
and geo-notes, i.e. user-de�ned notes associated to a geographical location. Users can access this
information either explicitly, e.g., by selecting the “around me” function in the main screen that
shows the list of nearby POIs (Fig. 1(b)), or periodically by turning on the “Notify me” toggle bu�on.
Geo-notes can be created and edited as audio recordings or text entries (Fig. 1(c)) and they are
organized into “routes” (Fig. 1(d)).
�e app is accessible visually, and also through built-in accessibility tools (ATs) available on

iOS devices. As shown in Section 4.4, the most common of these tools activated by iMove users
is VoiceOver, which provides access to built-in and other compatible applications through audio
feedback and can be used by users who are blind or with low vision. �e other ATs are designed to
improve accessibility for users with low vision, for example presenting enlarged fonts.
iMove is designed to be highly customizable: users can specify the categories of POIs they

are interested in, activate the automatic reading of surrounding information and modify se�ings
related to the system verbosity. �is la�er aspect (verbosity) needs to balance two contrasting
needs: on one side users would like to receive frequent updates, each one with detailed orientation
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(a) Root screen. (b) POI screen. (c) Edit text-note screen. (d) Route selection screen.

Fig. 1. Main screens of the iMove application.

information. However, on the other side, since this information is provided through audio, a verbose
system can divert users’ a�ention from ambient noise. iMove allows the user to tune a number of
parameters related to this aspect, including, for example, how o�en (in terms of both space and
time) the updated address should be read aloud.

3.2 Remote Logging System
Since iMove 2.0, released on December 8, 2015, the application implements a remote logging system
that makes it possible to collect anonymous app usage information2. Logging is supported by a
client library in iMove that communicates with a REST server to store data on a non-relational
database.

�e collected data are made available online, together with a detailed description of their format3.
Data are collected in anonymized form. �us, data do not include location (e.g., address), location-
related information (e.g. nearby POIs) or user-generated content, e.g. geo-notes. To reconstruct
user-interaction history, each log includes a unique pseudo-identi�er associatedwith an anonymized
user.
Each log record has two main components. �e �rst one contains data about the user and the

device on which iMove is running: the user’s pseudo-identi�er, the device model, the system
language, whether VoiceOver is enabled or not, the iMove build version (we collected data for build
versions 31, 32, 33, 34, 38) and log creation timestamps in the user’s time zone, UTC, and the server
time.
�e second component contains the application usage data. In iMove, we partition log entries

into four di�erent categories of usage data also described in Appendix A:
Screen logs capture user navigation between iMove screens. Each screen log records the

screen name and an “enter” or “exit” label when a user enters or exits a screen.
Action logs record iMove function activation by a user such as recording a new speech note.

2Users are informed of the data logging process at �rst app run, when they accept EULA (End User Licence Agreement) and
privacy policy.
3 h�ps://ewserver.di.unimi.it/taccesssim17/
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Noti�cation logs are generated when the application automatically provides information to
the user (e.g. when the user gets close to a POI).

Preference logs are generated either when a user changes the iMove se�ings or when the
app is started and a new value is detected for a system accessibility-related option. A
preference log lists the name of the modi�ed parameter, its old value, and its new value.

�e logging system evolved with the di�erent versions of iMove. Changes were introduced
to support new app functions and parameters4 as well as an updated logging system on user
pro�ling. In particular there are two major updates. Starting from version 34 iMove registers users’
mobility context, in the form of users’ speed and current activity (“stationary”, “walking”, “running”,
“automotive”, “cycling”, “unknown”), together with a con�dence level. With version 38 iMove also
logs which ATs are in use.

3.3 iMove Dataset Overview
�e iMove dataset (DS1) was collected during the December 2015 - March 2017 period with
descriptive statistics presented in Table 1. From the feedback we received by email and on the
AppStore, we realized that a number of users, whowe call “incidental” users, installed the application
without realizing its functionality and its intended use for PVI. For example, some users confused
iMove with iMovie, a popular application for video editing.

To �lter out these “incidental” users, we introduce the concept of “interaction session” (or simply,
session): a period of time during which a user frequently interacts with the application (e.g.,
navigates in the screens, performs actions or receives system noti�cations). A session is extracted
from app usage data as a sequence of consecutive records such that the time gap between each pair
is less than 10 minutes. �is constraint captures the intuition that the user might temporarily exit
the app for a short time within an interaction session. �e choice of using a 10 minutes threshold
is driven by the fact that this is the maximum value that can be set as the temporal distance
between two consecutive location noti�cations in iMove. Based on the intuition that users who are
uninterested in iMove would not use it for more than one session, we only consider logs from a
subset of DS1, we call DS2, that includes users having two or more sessions.

Table 1. Descriptive statistics on the iMove dataset and its subsets considered in the analysis.

Dataset Users Records µ records/user � records/user Range records/user
DS1: all iMove users 61, 715 3, 784, 700 61.33 235.63 1 � 35, 237
DS2: DS1users>2sessions 14, 948 1, 683, 737 112.64 472.21 2 � 35, 237
DS2-VO: DS2>1VoiceOver 2, 560 749, 235 292.67 1, 111.95 2 � 35, 237
DS2-NVO: DS20VoiceOver 12, 388 934, 502 75.44 73.98 2 � 2, 527
DS2-B34: DS2inst. version<34 8, 506 952, 416 111.97 605.53 2 � 35, 237
DS2-A34: DS2inst. version>34 6, 442 731, 321 113.52 182.42 2 � 6, 157
DS3: DS2inst./updat. version>38 3, 456 742, 378 214.81 930.67 2 � 35, 237
DS3-AT: DS3>1access. tools 1, 517 557, 420 367.45 1, 387.39 4 � 35, 237
DS3-NAT: DS30access. tools 1, 939 184, 958 95.39 73.13 2 � 1, 422
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As discussed in our initial analysis [27], the VoiceOver �eld in the logs was the only indicator
for distinguishing users that were likely to have severe visual impairment. To allow comparison
with that prior study, we also partition DS2 based on the presence of VoiceOver logs, as shown in
4Only minor changes in functions were introduced in the various versions considered for the analysis while several default
values for parameters were changed, as discussed in Section 4
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Table 1. Speci�cally, DS2-VO contains data from users with at least one VoiceOver-active record
and DS2-NVO contains the rest of the users with no VoiceOver-active records.

Since the logging of users’ mobility context started with iMove build version 34, we also partition
DS2 users along a di�erent dimension, based on the presence of users’ motion status. In particular,
DS2-B34 contains records from users that started using iMove before version 34 and DS2-A34
records of all the other installing the app a�er version 34.

As mentioned in Section 3.2, starting with iMove build version 38 we also log any user-activated
system accessibility tools. �erefore, for all users that installed or updated iMove to version 38
we logged, at least once, their system accessibility preferences. �e records from these users form
dataset DS3 with descriptive statistics shown in Table 1. As with DS2, we further partition DS3
based on the presence of built-in accessibility tools. In particular, DS3-AT includes all records from
users that had activated one or more accessibility tools at least once and DS3-NAT all the rest.

4 ANALYSIS OF IMOVE USE
In this section we analyze log records fromDS2 andDS3 datasets to highlight commonly used iMove
functionalities (Section 4.1), preferred se�ings (Section 4.2), and typical movement modalities during
interactions (Section 4.3). In addition, we explore the most commonly used system accessibility
tools (Section 4.4) and the di�erences between users that do and do not rely on any of these tools
(Section 4.5).

4.1 Most Used Functions
We �rst explore how users interact with iMove by considering the app screens that the users visit.
Appendix A reports the full list of iMove screens, each with a brief description. �e same for
actions, noti�cations and preferences. Figure 2 shows, for each iMove screen, the total number
of times it was accessed calculated on the DS2 dataset. As expected, the root screen is the one
accessed the most (213, 298 times), followed by the main se�ings screen (41, 967 times), and by the
screen that shows the list of POIs around the user (33, 783 times).
Considering noti�cations, ‘Location’, which reports the current address, is the most common

one, followed by the ‘POI’, which reports the names of the nearby POI. Geo-notes, both textual
and speech, are much less frequent, and their total number is one order of magnitude smaller
than location and POI noti�cations. �is is due to the fact that 90% of the users never created a
geo-note. Among users creating a geo-note, the percentage of geo-note noti�cations (‘TextNote’
and ‘SpeechNote’) is 2.7% of the total noti�cations.

We observe that explicit user actions are less frequent thannoti�cations, which is expected
given the nature of the application. Interestingly, the ‘NavigateToPOI’ action, whose implementation
was requested bymany initial users of iMove and introduced in build version 31, is the most frequent
user action.

4.2 iMove Se�ings and Preferences
iMove generates a log record every time a user preference is modi�ed. �ese records account
for 18% of the total log records in DS2. Figure 3 reports, for each preference se�ing, its default
value and how many times it has been set to a given value. To be�er understand the impact of
preference changes, it is important to consider the user-de�ned values jointly with the default
preference values. However, the logged data cannot provide us the information on how many
users intentionally choose to maintain the default value for a given parameter. We estimate this
as the percentage of users that changed a parameter’s default value at least once given all users
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Fig. 2. Overall number of interactions with iMove for each of the screens, actions and notifications.

(a) Number of changes for Boolean se�ings in DS2-B34. (b) Number of changes for Boolean se�ings in DS2-A34.
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(c) Number of changes for threshold se�ings in DS2-B34 (d) Number of changes for threshold se�ings in DS2-A34

Fig. 3. Changes in the se�ings preferences before iMove version 34 (le�) and a�er (right). Defaults values are
indicated with a circle following the se�ing’s name. The percentage of users that changed a se�ing’s default
value at least once among users that visited the corresponding screen is reported in brackets.

that actually visited that parameter’s se�ings screen. It is indicated in parentheses a�er the default
value (Figure 3).

Our initial analysis [27] of the preferred se�ings values referred to iMove versions prior to 34.
As shown in Figures 3(a) and 3(c), it highlighted a number of frequently-changed default se�ings
when users visited their corresponding screens. Speci�cally, the verbosity se�ings ‘SaySpeed’,
‘SayHeading’, ‘SayCourse’, and ‘SayCity’, as well as the ‘PreventIdle’ se�ing were activated by the
users. Moreover, the thresholds for the ‘GeoNoteTemporal’ and ‘PoiTemporal’ se�ings were lower.
�is observation led to new default values in the subsequent versions of iMove, which re�ect the
changes commonly made by the users. Speci�cally, the new default behaviour is for iMove to
provide more detailed and frequent information.
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(a) Number of user actions per modal-
ity.

(b) Number of noti�cations per modal-
ity.
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Fig. 4. User movement modality: actions and notifications.

To gain some insights on the users’ reaction to these new default values we analyze their
interactions with these se�ings on iMove versions 34 and a�er. As shown in Figure 3(b), we observe
that the percentage of users that changed the new default values for ‘SaySpeed’, ‘SayHeading’,
‘SayCourse’, ‘SayCity’, and ‘PreventIdle’ is much lower. �is may suggest that the new default
values for these se�ings be�er capture users’ needs. It indicates that users prefer to have all
available information, even at the cost of having a more verbose output speech.
We also analyze users’ changes to the threshold parameters for iMove versions 34 before and

a�er. As shown in Figures 3(c) and 3(d)), there is no observed convergence in speci�c preferred
values for these se�ings. Moreover, we notice that in subsequent versions of iMove (DS2-A34), a
higher percentage of users would adjust these parameters and their values tend to be more diverse.
�e same hold even for the ‘GeoNoteTemporal’ and ‘PoiTemporal’ se�ings that had new default
values. We speculate that these threshold se�ings are a�ected by other factors such as residual sight,
environment, context of use, and iMove experience. Speci�cally, we hypothesize that users have
very di�erent needs on the proximity and frequency of noti�cations that they receive.

4.3 Context of Use
Since the build version 34, iMove also logs information on the users’ movement modality during
user actions and noti�cations. �e movement modality indicates whether the user is stationary,
walking, running, cycling or on a vehicle (automotive). �is information is available only for those
users who have enabled this functionality on their mobile phones. �ere are 5, 668 such users in
DS2. As shown in Figure 4(a), we observe that the great majority of actions are performed while
the user’s movement modality is either ‘stationary’ or ‘automotive’. On the contrary, more than
25% of noti�cations are received while users are walking (Figure 4(b)).
�is suggests that users avoid active interactions with the system while in motion, e.g.

walking. We believe that there are two possible explanations for this observation. One is that,
when in motion, users concentrate on their activity and use their senses to preserve their safety.
�e other is that the interaction with the app involves the use of hands, that could be otherwise
occupied (e.g., holding the guide dog or the white cane). In both cases users cannot actively interact
with the device. We suspect that a user with visual impairment that is walking prefers to stop to
interact with iMove.

In contrast, we suspect that passive interactions such as noti�cations are acceptable while
the user is in motion, e.g. walking. As shown in Figure 4(b), we observe that the great majority
of users receive noti�cations while walking or in a moving vehicle. Noti�cations are triggered
based on time and space thresholds (e.g. time and distance from previous noti�cation). �erefore,
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it is not a surprise that there is a high number of noti�cations while in a moving vehicle because
users move faster and hence the distance constraint is easily met.
Moreover, we look deeper into the noti�cations from the perspective of the two common

modalities: walking and automotive. We investigate whether users tend to receive noti�cations
predominantly in a single modality. Figure 4(c) considers about 2, 300 users that receive noti�cations
while walking or in a moving vehicle. �e graph shows the number of users per ratio of automotive
versus walking noti�cations. We observe that most users are polarized. More than 800 users
received 90% or more noti�cations while walking. Likewise, almost 1, 000 users received more
than 90% of noti�cations while in a moving vehicle. �e other users (about 20%) receive at least
10% of their noti�cations in both modalities. �is observation highlights users’ tendency to
receive noti�cations in predominantly onemovingmodality (either walking or automotive).
It suggests that iMove could be personalized (e.g., in terms of se�ings values) to be�er adapt to the
users, based on their preferred moving modality.

4.4 System Accessibility Tools
�e additional contextual data collected by iMove in DS3 allows for a be�er understanding and
categorization of iMove users based on the assistive technologies (ATs) that they are using to
interact with their phones. Considering all users in DS3, we discover that 1, 939 do not use any
system accessibility tool (these are the users grouped in DS3-NAT). An additional 614 rely on
some ATs, but not on VoiceOver, the built-in screen reader on iOS.�us, a total of 2, 553 user do
not use VoiceOver, and therefore they surely rely on sight for interaction. Among those using
VoiceOver, which we can expect to be blind or with severe visual impairment, 637 use at least
one other accessibility tool in addition to VoiceOver, suggesting that they still have residual sight.
Consequently, only 266 users base their interaction solely on audio feedback from VoiceOver and
hence are likely to be blind. �is is summarized in Table 2.

Table 2. Inferred visual impairment based on the adopted ATs among users in DS3.

Activated ATs Inferred disability # users % users
None None or mild visual impairment 1, 939 56.1%
ATs-VO: ATs excluding VoiceOver Low vision 614 17.8%
ATs+VO: ATs including VoiceOver Low vision (limited residual sight) 637 18.4%
VO: VoiceOver only Blind or severe low vision 266 7.7%

Page 12 of 28Transactions on Accessible Computing

As shown in Table 2, less than 10% of iMove users may be blind, while many have su�ciently good
residual sight to interact with the device without any AT.�is suggests that visual interaction
tools (e.g., a map) even if not accessible through audio (e.g., through VoiceOver) can still
be useful to many users of apps designed for PVI.

Figure 5(a) shows that the most common AT among users in DS3-AT is VoiceOver, which is used
at least once by 59.5% of users. �e second most common tool, used by 39% of users, is “Enlarged
Content Size”. �is accessibility tool allows resizing of the system fonts from XS to XXXL.�e same
tool allows the size of interface elements to be altered for be�er accessibility by PVI.�is option
is captured by se�ings ranging from AccessibilityM to AccessibilityXXXL. Figure 5(b) shows the
detailed distribution of se�ings for “Enlarged Content Size”. Values are ordered from the smaller
content on the top, to the larger one on the bo�om. “L” is the system default value, adopted by
many of the iMove users (Figure 5(a) considers users with “enlarged content” those that select a
value larger than L). Few iMove users select smaller content (7%), while 38.7% of the users select
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(a) ATs percentage of usage (b) Values distribution for the Enlarged Content Size param-
eter

Fig. 5. Use of ATs among users in DS3-AT.
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Fig. 6. Di�erences between users DS3-AT and SD3-NAT.

larger content. From this analysis we learn that, when developing an assistive app for PVI,
attention should be devoted to test the user interface with enlarged content, as this is a
common setting.

4.5 User Comparison Based on Preferred Assistive Technologies
We investigate the di�erences between users that activated ATs when interacting with iMove
(DS3-AT) and those who didn’t (DS3-NAT). From Table 1 we can observe that the average number
of records per user is about three times higher for DS3-AT users than for DS3-NAT users. �is
suggests that DS3-AT users make a more intense use of iMove. To con�rm this, we consider, for
each group, the number of noti�cations and actions per user, as well as the period of use of iMove.
Here, the period of use is measured as the span of days between the �rst and last time a user enters
the iMove root screen. We compare the resulting mean ranks with a Mann-Whitney U test since
the data was not normally distributed (also visible in severe skewness and outliers in the boxplots
of Figure 6).
We �nd that users in DS3-AT receive signi�cantly more noti�cations (p < 0.001), such as the

“Location” noti�cations, as shown in Figure 6(a)). Similarly, these users perform signi�cantly more
actions (p < 0.001). For example, Figure 6(b) shows that the number of times a user asks for
directions to navigate to a POI is signi�cantly higher for DS3-AT than for DS3-NAT. Users in DS3-
AT also use the application for a signi�cantly longer period than the DS3-NAT users (p < 0.0001):
on average, 168 and 61 days respectively, as shown in Figure 6(c).

Based on the results presented abovewe can con�rm thatusers that adopt systemaccessibility
tools make more intense use of iMove. We interpret this result with two key observations.
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First, while we �ltered out incidental users by considering only those with two or more usage
sessions (see Section 3.3), some users in DS3-NAT may still have been incidental users that stopped
using the app a�er a few sessions. Second, the users in DS3-NAT most likely have less severe visual
impairment than the users in DS3-AT, which is suggested by the fact that users in DS3-NAT do not
use any ATs to interact with the device. Consequently some of these users might use iMove only
sporadically, for example only when certain light conditions make orientation more challenging
for them.

5 CLUSTER ANALYSIS BASED ON USER INTERACTION STREAMS
Previous sections reveal interesting observations and �ndings by performing exploratory and
inferential analyses independent of the temporal structure of the logs. However, richer pa�erns of
interaction lie in the sequential relationship between the log entries. To uncover these pa�erns we
use unsupervised learning techniques on streams of log entries, which preserve the temporal struc-
ture of the data. We anticipate that users naturally fall into clusters based on common interaction
pa�erns with iMove. Moreover, the nature of these interactions is likely multi-dimensional: user
clusters form a hierarchy, where most prominent interaction pa�erns group users in high-level
clusters while less signi�cant interaction pa�erns characterize subclusters. �e automatic discovery
of these clusters and subclusters can help us identify: what are the major interaction categories;
which is the most prevalent interaction; and what is the relationship between di�erent types
of interactions. �is clustering is performed on the 1, 517 users residing in the DS3-AT dataset
that interact with the iMove through assistive technologies and thus are likely to have visual
impairment.

5.1 Clustering Approach
As discussed in related work, HCI researchers have adopted prior work in machine learning, natural
language processing and network analysis, to be�er understand user behavior, with the clickstream
analysis in [48] being the closest to our work. Our approach adopts cluster analysis and builds upon
previous methods for the purpose of improved understanding in assistive orientation of PVI. One of
the inherent challenges in analyzing our data is the diversity of the possible interactions. Users can
interact with the app either by actively navigating the screens and using their functions, captured
by screen and action logs, or by physically changing their location thus generating noti�cations
logs. We introduce the notion of sessions (de�ned in Section 3.3) into our feature engineering
(described below) to yield more intuitive and high level descriptions for the discovered clusters.

As described in our ASSETS paper [27], we represent each user by the stream of interactions
(istream) with the app. We map users to a feature space extracted from these streams, construct
a similarity graph by comparing users in this feature space, and identify clusters and more �ne-
grained subclusters of similar users by graph partitioning. Finally, we interpret the meaning of
the clusters and subclusters by isolating primary features that are responsible for their formation.
To assist future researchers in adopting this analysis of their data, we describe the above steps,
implementation, assumptions, and the hyper-parameters used in our approach.

Obtaining user istream. We de�ne an istream as a sequence of interactions between the user
and iMove, extracted from user’s log entries ordered by their timestamp. It captures both the type
of the log entry (i.e. screen, action, or noti�cation) and the magnitude of time gaps between two
consecutive log entries. Precise time gap values are omi�ed. If a gap is smaller than 10 minutes the
log entries belong to the same session (as de�ned in Section 3.3). Instead time gaps greater than 10
minutes denote session boundaries, and are represented by the symbol “|”. Figure 7 illustrates an
example of this approach for obtaining a discrete user istream.



Insights on Assistive Orientation and Mobility of People with Visual Impairment Based on
Large-Scale Longitudinal Data 0:15

Fig. 7. Mapping interaction streams to n-grams. (s-Root: root screen, n-POI: notification about a POI, n-
Location: notification about user location, s-POI list: screen with list of POIs, and s-POI details: screen with
details about a POI.)

u2: [0.002, 0.000134, 0.0000045, 0.57, …] 

[0.001, 0.000124, 0.0000032, 0.47, …]: u1 
u3: [0.009, 0.000888, 0.0000099, 0.93, …] 

s(u1, u3)  

s(u2, u3) 

Fig. 8. Constructing a similarity graph, where nodes represent users and edges the similarity of their vectors.

Mapping users to an intuitive feature space. We treat istreams as text sentences and adopt
n-gram-based text representation, a common practice in natural language processing [14]. We
consider three classes of records: screen enters, actions and noti�cations. Each of these three
classes is de�ned as a set of atomic strings, which are denoted by As (screen enters), Aa (actions),
and An (noti�cations). For example, the string “s-Root” 2 As represents an entrance in the root
screen; “a-navigateToPOI” 2 Aa represents the action of ge�ing the navigation instructions to
a POI; and “n-Location” 2 An represents the location noti�cation. �e istream for a given user
i is de�ned as a sequence Si = (s1, s2, ..., sm) wherem is the total length of the istream for user
i and, for each j 2 [1,m], sj 2 As [ Aa [ An [ {|}. We also de�ne Fn as the set of all possible
n-grams (n consecutive elements) from all the users’ istream sequences: Fn =

–#users
i=1 n-gram(Si ).

We represent each user by a numerical k-dimension feature vector, where k is the number of all
possible n-grams in Fn . To calculate these vectors we use the term frequency-inverse document
frequency (tf–idf) vectorizer in [39], a typical practice to obtain features for document clustering.
Simply put, we count the occurrences of n-grams in each user istream and normalize and weight
with diminishing importance n-grams that occur in the majority of istreams across all users. We
experimented with di�erent values of n in the n-gram and chose 5-grams for our analysis, though
4-grams and 3-grams revealed similar clusters.

Reducing the dimensionality of the feature space. Intuitively, a larger value of n for the
n-gram captures longer subsequences that are unlikely to repeat as a pa�ern in the istream. �us,
the vector space representing users is typically of high dimensionality (k = 23, 036 possible 5-grams)
and very sparse (most of the 5-grams are not present in the users’ stream and thus many feature
values are zeros). Data in high dimensional feature spaces exhibit poor similarity under measures
such as cosine similarity, typically used for document clustering, thus may fall under clusters that
are not meaningful. To overcome this challenge that was not previously addressed in our ASSETS
paper [27], we use a linear dimensionality reduction method called Latent Semantic Analysis [15],
which is typically performed on tf–idf features. With LSA, we project users to a lower dimensional
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space, by taking the list of 23, 036 unique n-grams across all users and approximate them as a linear
combination of 735 unique features, while still explaining 98% of users’ istream variability.

Constructing a similarity graph. We create a fully connected graph, where each node repre-
sents a user and each edge between a pair of users represents the weight based on their pairwise
similarity score. To calculate the similarity score between two users, we compute the cosine simi-
larity of their n-gram feature vectors projected in the low-dimensionality feature space. Figure 8
illustrates a toy example of this graph.

Clustering. We partition the graph into a dendrogram containing clusters and subclusters
of similar users with community detection using the Louvain method [11], which, simply put,
optimizes for higher density of edges inside communities compared to edges between communities.
For our implementation we used the “generate dendrogram” method with default parameters
from the python-louvain library [8]. �e Louvain method is a form of agglomerative hierarchical
clustering [46]. �us, it is a natural approach to uncover structure from our data, which are
represented with a graph. Other approaches such as k-means [30], which fall under centroid-based
clustering, would not be appropriate since they come with other geometric assumption about the
data (e.g., sphericity) [25]. One of the advantages of the Louvain method is that it is highly e�cient
for unfolding a complete hierarchical community structure for large-scale graphs [11].

Identifying descriptive features. To interpret cluster meaning, we isolate the primary features
responsible for a cluster by performing feature selection. Speci�cally, for each cluster, we build
a binary classi�er that distinguishes users belonging to that cluster from the remaining users at
the same level of the dendrogram. We select 10 most important features based on their ability
to discriminate between the two classes in the following way. We determine the dependency
between each feature and the classi�er assigned label using a chi-squared statistic [51]. If the
feature is independent of the label, it is discarded. Otherwise, the feature is informative of the
cluster formation. �e chi-squared statistic is used to rank (score) such features and the features
with top 10 scores are retained using the “SelectKBest” method from scikit-learn [39].

5.2 Results and Interpretation
Our cluster analysis requires users to have at least one session with 5 log entries that fall under
actions, screens or noti�cations categories. From the total of 1, 517 users residing in the S3-AT
dataset 1, 441 met the criterion. �e clustering procedure generates 9 clusters with a modularity of
0.39, where modularity [37] is a widely-used metric to assess the quality of a graph’s partition into
communities. Loosely speaking, it measures the density of edges inside clusters to edges outside
clusters with values in the [�1, 1] range, where a higher value indicates be�er clustering. Six of the
detected clusters contain a total of 6 outlier users, which had at most 3 short sessions each. We
omit these outlier users from the following discussion, hence focusing on three clusters with many
users and their subclusters. Figure 9 visualizes the resulting clusters and the top 3 features with the
highest discriminating power per cluster. To get a con�rmation of the semantics we associate to
each cluster and subcluster based on their top 20 primary features. To further study these clusters,
we analyze and compare users’ interaction characteristics such as session duration and time passed
between consequent sessions among others.

C1: �e �rst cluster contains 531 users. From the primary features having higher normalized
frequencies for the users in this cluster compared to users outside the cluster, we observe that C1
users actively interact with the app. At the same time, they receive some location noti�cations
and further inquire information about points of interest around them by visiting the POIDetail
and POIListAroundMe screens. �e primary features with lower normalized frequencies for this
cluster compared to other clusters indicate that most of the sessions of C1 users tend not to be
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(n-POI, s-Root, |, s-Root, |) 0.000000 0.000556
(s-Root, |, s-Root, |, n-POI) 0.000000 0.000530
(s-Root, |, s-Root, n-Location, n-Location) 0.000605 0.001763

c1.1 No "empty" sessions(117  ):

(|, s-Root, |, s-Root, |) 0.013078 0.030019

Feature space normalized frequency

(s-Root, s-Root, s-Root, n-Location, s-Root) 0.016411 0.001919
(s-POI_list, n-Location, s-POI, s-POIList, n-Location) 0.009089 0.001436

in cluster not in cluster

c1 Check list and details of nearby POIs(531   ):

(|, s-Root, n-Location, s-Root, |) 0.002430 0.000874
(s-Root, |, s-Root, n-Location, |) 0.006609 0.000439
(n-Location, s-Root, |, s-Root, n-Location) 0.003054 0.000689

c1.2 Short sessions, fewer notifications than C1.1(414   ):

(s-Root, |, s-Root, |, s-Root) 0.079046 0.001460
(|, s-Root, |, s-Root, |) 0.056609 0.000881
(n-Location, n-Location, n-Location, n-Location, n-Location) 0.000249 0.060531

c2 Short "empty" sessions, no consecutive n-Location(473   ):

(n-Location, n-Location, n-Location, n-Location, n-Location) 0.134319 0.000812
(n-POI, n-Location, n-Location, n-Location, n-Location) 0.023297 0.000254
(s-Root, |, s-Root, |, s-Root) 0.001940 0.037590

c3 Frequent n-Location, some n-POI, rare short "empty"(431   ):

(|, n-Location, s-Root, n-Location, s-Root) 0.000209 0.000000
(s-RouteEdit, s-Notes, s-RouteEdit, s-Notes, s-RouteEdit) 0.000000 0.000134
(|, s-Root, n-POI, s-Settings_all, s-Root) 0.000183 0.000000

c3.1 Less consecutive n-Location, other interaction(109   ):

(n-Location, n-Location, n-Location, n-Location, n-Location) 0.175994 0.011204
(|, s-Root, n-POI, s-Root, |) 0.000187 0.000000
(s-Root, n-Location, n-Location, s-POIList, n-POI) 0.000184 0.000021

c3.2 More consecutive n-Location(322   ):

Fig. 9. Clustering results.
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Fig. 10. Analysis of the three high level clusters.
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Fig. 11. Analysis of the subclusters identified in C1 and C3.

short “empty” sessions i.e., sessions in which the user only starts the app to visit the root screen
(e.g., the n-gram “| s-Root | s-Root |”). Also, users receive noti�cations related to their location
sparsely. We can infer that users in this cluster o�en open the application to check the list of nearby
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POIs and their details. In con�rmation of these interpretations we found that users in C1 have
higher frequency of sessions that explore POI-related screens than C2 and C3, shown in Fig. 10(e);
they receive sparser noti�cations in a session about their location compared to C3 but more o�en
than users in C2 (Fig. 10(d)); and their session lengths tend to be shorter than C3 but longer than
C2 as captured by both number of logs in a session (Fig. 10(a)) and session duration in minutes
(Fig. 10(b)).

Two subclusters are generated from C1:

C1.1 contains 117 users that don’t have “empty” sessions. Further analysis of their records
indicate higher ratio of POI-related screens per session compared to C1.2 users (Fig.11(a)).

C1.2 contains 414 users that tend to have more o�en short sessions with a fewer noti�cations
than C1.1.
We suspect that C1.1 is picking users that have longer session length within C1. �is is
also con�rmed by the boxplots of mean session length of C1.1 users compared to C1.2 in
Fig.11(b).

C2: �e second cluster contains 473 users. In this case most of the primary features denote higher
frequencies for short “empty” sessions and lower frequency of consecutive location noti�cations
within the same sessions for users in C2 than outside C2. �is suggests that C2 contains users that
starts the application, do not wait for any noti�cations, and then close the application. Since the
Root screen displays the current address, we speculate C2 users o�en open iMove simply to access
(though VoiceOver or other AT) the current address. As con�rmed by the boxplots in Fig. 10(a) and
Fig. 10(b), users in C2 have shorter mean session length as measured by the number of records in
their sessions and durations in minutes. Typically, users in this cluster receive the lowest number
of Location noti�cations (Fig.10(d)) and C2 users inquire less o�en about POI (Fig.10(e)) compared
to C1 and C3. Our clustering technique did not generate any subcluster for C2.

C3: �e third cluster contains 431 users. From the top features characterizing this cluster, most
of them indicate high frequency of location and POI noti�cation sequences in a single session for
users in C3; and others indicate low frequency of “empty” sessions. �ese features suggest that C3
is a set of users running the application for long sessions during which they frequently receive
location and POI noti�cations. Indeed, in Fig. 10(a) and 10(b) we observe a higher mean session
length for C3 users compared to users in the other clusters. Also, while C1 users also receive
location noti�cations, C3 users have a substantially higher average ratio of location noti�cations
per session than both C1 and C2.

Two subclusters are generated from C3:

C3.1 di�erentiates 109 users from the C3 cluster as the ones that receive less repeated location
noti�cations. We suspect that these users may still interact with iMove, e.g. visit the Root
screen or Se�ings all, while receiving Location noti�cations.

C3.2 contains the rest of the 322 users that receive more repeated location noti�cations, as
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con�rmed in Fig. 11(c).

More importantly, Figure 10(c), 10(f), and 11(d) demonstrate a distinct di�erence between our
high and low level clustering results. Speci�cally, at a high level our clustering approach is able to
group users based on their interaction pa�erns independently of the number of their total sessions
and total days using iMove. However, in the lower level our clustering approach tends to uncover
some of the sub-behaviors that are more common among “novice” users, users that are using iMove
for a shorter period, within the higher level clusters.
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Fig. 13. Distribution of users per cluster conditioning on the AT and movement modality groups.

5.3 Interaction Clustering vs Grouping Based on ATs and Movement Modality
Sections 4.3 and 4.4 de�ne groups of users based on their assistive tools and movement modality,
respectively. We explore how our clustering approach based on user interactions relate to these
alternative categorizations of iMove users. At a high level, iMove users fall under three clusters:
in C1 users are interested in surrounding points of interest, in C2 they interact in short bursts
to inquire about current location, and in C3 users keep the app active for long sessions while in
motion. As shown in Fig. 12 the relationship between these clusters tends to be preserved across users
with di�erent severity of visual impairment and preferred movement modality.

Interaction clustering and AT-based grouping. Figure 13(a) shows how iMove users adopt-
ing di�erent ATs fall into the C1, C2, and C3 interaction clusters. We note that users who do not
include VoiceOver as one of their ATs to interact with iMove have a less marked presence in C3. We
recall that these users are most likely the ones with mild visual impairment since they are capable
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of always accessing iMove through visual means. �us, it is not surprising that these users are less
present in C3, the cluster of users who constantly receive noti�cations about their surroundings.
In contrast, the majority of this group (almost half) is located in C2, where users tend to open the
app in short bursts to investigate their surroundings. Based on these �ndings we suggest that users
with mild visual impairment use iMove sporadically and only to retrieve speci�c information about
their surroundings. On the other hand, users who rely on VoiceOver, either exclusively or also with
other ATs, are instead more present in C3 and less in C2. �ese users are the ones likely to have
moderate or severe visual impairment and therefore they are o�en interested in receiving noti�cations
while using iMove.

Interaction clustering andmovementmodality. Our analysis of preferred movement modal-
ities conducted in Section 4.3 uncovers that users prevalently access iMove through a single move-
ment modality: stationary, automotive, or walking. Figure 13(b) shows how grouping users based
on these preferred movement modalities relates to their interaction clusters. Speci�cally, we see
that users that prevalently interact with the app while walking or in an automotive modality
are o�en grouped in C3. �is suggests that both automotive and walking users are interested in
continuously receiving noti�cations about their location and surroundings while in motion; they rarely
open the app to just inquire about their surroundings. Accessing POI information seemed to be
more typical for stationary users, people who stop moving to interact with the app.

6 DISCUSSION
Our analysis of large-scale longitudinal data based on exploratory, inferential, and descriptive
methods provides evidence for how PVI interact with an assistive orientation and mobility ap-
plication in real-world scenarios as well as how to make similar applications more responsive to
variability within this user group. Given the tendency of prior work in this �eld towards supervised
experiments with few local participants, the release and analysis of observational data in the wild,
presented in this article, can play an important role in achieving a broader impact in independent
mobility that these technologies can provide.

6.1 Implications
Our analysis highlights a number of use properties that are speci�c to iMove and provide insights
that can be generalized to other assistive applications, in particular those aimed at supporting
orientation and mobility of PVI.

Functions and defaults. Our analysis indicates that users prefer to receive all available
information, even when this results in a higher verbosity. �e corresponding se�ings
can be activated by default with the option to allow users to adjust them as they become
more familiar with the application or a new environment. Users receive most of their
noti�cation while in motion, which highlights the need for noti�cations to be pushed to
the user automatically. However, there is high variability in the preferred proximity and
frequency of these automatic noti�cations. Hence, users should be given the opportunity
to tune these parameters early on. As expected, users who make the most intense use of
iMove are those who activate the accessibility features in their phones. What was not
expected is that at least 3/4 of these users interact with the system using residual sight. �is
means that visual interfaces (e.g., a map), even if not accessible through a screen reader, can
still be useful to many users of apps designed for PVI. Enlarged content is the second most
activated accessibility features by iMove users beyond VoiceOver. �is emphasizes the
need for similar applications to guarantee full compatibility with this built-in accessibility
feature beyond the screen reader.
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Novel interfaces. We observe that users avoid active interactions with the system while in
motion, e.g. walking. �is could be due to the fact that, when in motion, users concentrate
on their activity and use their senses to preserve their safety, or simply their hands are
occupied with a guide dog or a white cane. We suspect that a user with visual impairment
that is walking prefers to stop to interact with iMove. �is observation calls for new
interfaces that allow users to inquire for information while in motion. Such interfaces
could for example minimize the cognitive load in performing these actions, incorporate
gesture recognition, or employ other hands-free input techniques.

Inference and adaptation. In this analysis users are grouped across three axes: i) activated
built-in accessibility features, ii) movement modality, and iii) interaction behavior as
captured by clustering. We discuss both how these axes di�erentiate interactions with
iMove and how they interplay. We con�rm that the relationship between the uncovered
user clusters tends to be preserved across users with di�erent severity of visual impairment
and preferred movement modality. Future applications can infer the group that a user
belongs to across these axes and adapt its se�ings and interface accordingly. For example,
iMove users have a tendency to receive noti�cations in predominantly one moving modality,
walking or automotive. �e frequency of noti�cations as well as the amount of information
enclosed could be adapted based on the modality.

6.2 Limitations
Our analysis of large-scale observational data from remote usage logs can overcome many of the
challenges that are typical of experimental studies in accessibility. Since it is not constrained to
speci�c participants, scenarios, or laboratory environments it can re�ect the diversity of real-world
situations and user demographics. Moreover, it is not susceptible to the Hawthorne e�ect, where
participants behave di�erently due to their awareness of being observed. However it comes with
limitations.

Incomplete contextual information. Users demographics are not known and we can only
infer some of them heuristically. For example, we don’t know users’ age and we can only
infer if they are blind or low visioned based on the activated built-in accessibility features.
Whereas for those users who did not activate any of these features we can not be really
conclusive. We assume they are sighted though they may be users with low vision. Also,
we can’t estimate users’ technology experience or expertise in mobility as well as other
background information that may in�uence how they interact with iMove.

Due to privacy concerns, collected data must be anonymous. �ey cannot contain
neither explicit identi�ers such as full name nor quasi-identi�ers such as location [9].
Hence iMove does not collect any location-related information, like address, nearby points
of interest, or geonotes. Knowing this information could allow for deeper insights and
interpretability of the observed user behavior. For instance, location information can also
in�uence behavior; wanting to be noti�ed of the street name may be more important in
cities that have complex street layout, etc.

As future work, we are interested in examining best practices to combine observation
data with a remote study. For example, users could be invited to participate and share more
detailed and anonymous information about their background and their interaction with
the app. Data from this smaller sample of users could contribute to validate our �ndings
and to provide deeper interpretations.

Simplifying assumptions. �e de�nition of a session can have an impact in the inter-
pretability of the user clusters. In this analysis we de�ne a session based on heuristic
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temporal gaps in interaction. However there may be other aspects that delimit usage
sessions that we are not considering. Provided more contextual information, session
boundaries could be be�er estimated.

Both the dataset and details of the clustering technique have evolved in this article
compared to our initial analysis [27]. However, we �nd the clustering results to be consistent,
with the exception of the two smaller clusters with burst inquiries about location and nearby
point of interest in [27] converging into one cluster with short sessions. �is could be due
to the longer timespan of this dataset, 15months vs. 3 months in the previous analysis. A
limitation of this analysis is the fact that the dataset is a snapshot in the lifespan of iMove,
15 last months. �is means we are comparing users’ interaction with the app over di�erent
periods. Some users just started using the app. Others had been using it for long time
before the logging system and only their last interactions are logged. �ere were practical
reasons behind the decision to use all available data. However, we are continuing collecting
data and in future work we would perform our analysis only on a subset of users, e.g. users
for whom a year has passed since they installed the app. By controlling for this factor, we
could also explore the evolution of user interactions over time.

Approach portability. We see the analysis methodology proposed in this contribution to be
adapted to the study of other applications. However, the challenge in the �eld of accessibility
is for researchers to have access to such data. A similar approach requires a publicly
accessible app, not a prototype; this entails engineering, communication, maintenance,
localization, and other components o�en outside the realm of a research lab. In our case
this was achievable through a collaboration between industry and academia.
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7 CONCLUSIONS
�is article presents an analysis of data collected in the real world from iMove, a mobile app that
supports the outdoor orientation of PVI. We initially collected a dataset containing usage logs with
the iMove system of more than 60, 000 users. We then �ltered “incidental” users, that is those users
that are not really interested in the functions of the app. Our �nal analysis covered the remaining
15, 000 users worldwide and more than 1.5 million log records. We found that the most popular
interaction mode for these users is passive. �ey receive more noti�cations, o�en verbose, while in
motion and they perform fewer actions. �e use of built-in assistive features such as enlarged text
indicated a high presence of users with residual sight. Moreover, we observed users’ tendency to
receive noti�cations in predominantly one moving modality, either walking or in a moving vehicle.
iMove was originally designed with a main user target in mind: PVI that would keep the app

active along a route to get noti�cations. By clustering about 1, 400 users with visual impairment
based on common interaction pa�erns, our initial user group was successfully identi�ed from one
of the major clusters (C3). It contained more than 25% of the users. In addition, our clustering
method was able to capture and provide semantics for the remaining 75% of the VO-users with two
more clusters. �e �rst, C1, identi�ed users that mainly use the app to know which are the nearby
point of interests. �e second, C2, grouped users that employ the app in short bursts to check their
location.
One important characteristic of the clusters identi�ed in this contribution is that they actually

uncover user’s behaviour. Di�erently from the users’ grouping based on assistive technologies and
moving modality, clusters capture user’s interaction pa�erns, with a clear and meaningful semantic
con�rmed by a follow-up exploratory analysis.

Our clustering approach also identi�es subclusters for C1 and C3. Interestingly, these subclusters
di�erentiate between novice users and those that used iMove for a long period. �is suggests



Insights on Assistive Orientation and Mobility of People with Visual Impairment Based on
Large-Scale Longitudinal Data 0:23

research questions that we intend to investigate in future work: how does a user’s interaction
pa�ern change during time? Which are the behavioural di�erences between novice and expert
users? Which are the preferred se�ings of experts users?
From the point of view of users’ clustering, there are two possible directions along which this

contribution can be improved. First, it is possible to study the link between preferences for user
se�ings and the automatically detected user clusters. Second, clustering techniques can be possibly
used for e�ectively identifying “incidental users” hence removing them more reliably.
Our clustering method can contribute to the analysis of similar assistive applications. We are

currently applying this approach to guide the extension of iMove for outdoor navigation in addition
to orientation support. A second mobility assistive tool that can bene�t from the work in this
article is NavCog [4], an indoor navigation assistant. In both cases, we believe that knowledge
extraction in this unsupervised way from automatically collected usage data will help gain a
clearer understanding of this user population – hence improving the design of navigation and other
assistive applications for PVI.
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A IMOVE SCREENS, ACTIONS AND NOTIFICATIONS
We report a brief description for each screen (Table 3), action (Table 4), noti�cation (Table 5) and
parameter (Table 6).
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Table 3. iMove screens.

Screen name Description
Root Main screen, shows info about current address, the closer POI and the

number of other POIs close-by. Enables notes creation and access to
se�ings.

Se�ings all Allows users to toggle the “notify me” se�ing and to access four se�ing
screens: Address, POIs, Notes, and System.

POIList-around me Detailed list of nearby POIs. By selecting a POI the “POIDetail” screen
is shown.

Credits-Info Reports information about the developer and sponsors. Allows users to
email the developer.

RoutesList List of all routes. By selecting a speci�c route the “RouteDetailEdit”
screen is shown.

POIDetail Reports available details about a POI such as address, phone number,
and website and allows for associated actions such as navigate to, call,
and open in browser.

POISelector active categories Only the POIs in the selected categories will be shown and communi-
cated to the users.

ActiveRouteSelector Users can activate and de-activate a route from this screen. A note is
rendered only if its route is active.

Se�ings location A screen speci�c to location and address se�ings, which among other
allows users to select minimum spatial and temporal distances between
two consecutive location noti�cations.

NotesList List of all audio and text notes; upon selecting a note it is possible to
edit it.

NewAudioNote Allows users to create a new audio note.
RouteDetailEdit Shows the details of a route and allows users to see its associated notes

and share the route.
Se�ings system A screen speci�c to system se�ings, e.g. “prevent the screen lock” toggle.
NewTextNote Allows users to create a new text note.
Se�ings POI A screen speci�c to POIs se�ings. Allows users to select the distance at

which a POI will be communicated.
Se�ings notes A screen speci�c to notes’ se�ings. Allows users to select the distance

at which a note is rendered.
NewRoute Allows users to create a new route.
AssociatedRouteSelector Allows users to associate a note to a route.
EditAudioNote Allows users to edit an audio note.
EditTextNote Allows users to edit a text note.
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Table 4. iMove actions.

Action name From screen Description
NavigateToPOI POIDetail Users open the default navigation app in

their system (e.g. Google Maps), with di-
rections to the selected POI.

SavedNewSpeechNote NewAudioNote Users save a new audio note.
SavedNewTextNote NewTextNote Users save a new text note.
ConvertSpeechToText(newNote) NewAudioNote Users convert a new audio note to a text

note.
OpenWebsiteOfPOI POIDetail Users open a selected POI webpage in their

browser.
ConvertTextToSpeech(NewNote) NewTextNote Users convert a new text note to an audio

note.
CallPOI POIDetail Users place a call to a selected POI.
SharedLocationSMS Root Users share their position via a text mes-

sage (SMS).
SharedTextNotesViaMail RouteDetailEdit Users share their text notes of a route by

email in the form of a KML �le.
SavedEditedSpeechNote EditAudioNote Users edit an audio note and save it.
SavedEditedTextNote EditTextNote Users edit a text note and save it.
ConvertTextToSpeech(EditNote) EditTextNote Users convert a text note to an audio note.
ConvertSpeechToText(EditNote) EditAudioNote Users convert an audio note to a text note.
SavedEditedRoute RouteDetailEdit Users edit a route and save their changes.
ImportedTextNotesKML RouteDetailEdit Users import text notes from a KML �le.

Table 5. iMove notifications.

Noti�cation name Description
Location Reads information on current address such as city, speed, orientation and

other, based on verbosity se�ings. Users are noti�ed of their current address
when both the user-de�ned time and distance thresholds between two current-
address noti�cations are met.

POI Reads the closest POI to users as well as the number of other nearby POIs. �e
distance at which a POI is considered as nearby is de�ned by the user. POIs
are announced if they meet the closeness threshold and if a user-de�ned time
threshold from previous POI noti�cation has passed.

SpeechNote Plays an audio note when users are close to the location where the audio note
was recorded. Closeness is de�ned by the user and an audio note is played
only if it meets this user-de�ned closeness threshold. �e note is not played
back again until a certain time (user-de�ned) has passed.

TextNote Analogous to audio note.
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Table 6. iMove parameters from build 34.

Parameter name Values Default Value description
SaySpeed Yes/No Yes De�nes whether user speed should be provided as part of a

location noti�cations.
SayHeading Yes/No Yes De�nes whether user heading should be provided as part of a

location noti�cations.
SayCourse Yes/No Yes De�nes whether user course should be provided as part of a

location noti�cations.
SayCity Yes/No Yes De�nes whether current city should always be provided as part

of a location noti�cations (if not, it is only provided when it
changes from last location noti�cation).

PreventIdle Yes/No Yes If set to “Yes”, prevents the device from going into idle mode
when iMove is running.

BkgTimeLimit Yes/No Yes If set to “Yes”, iMove stops running in background a�er 30 min-
utes.

AutoWhereAmI Yes/No Yes Enables location noti�cations.
AutoGeoNotes Yes/No Yes Enables SpeechNote and TextNote noti�cations.
AutoAroundMe Yes/No Yes Enables POI noti�cations.
GeoNoteTemporal 10s,

30s,
60s,
120s,
300s,
600s

120s Minimum temporal distance between two SpeechNote or
TextNote noti�cations for the same note.

LocationTemporal 10s,
30s,
60s,
120s,
300s,
600s

30s Minimum temporal distance between two Location noti�cations.

PoiTemporal 10s,
30s,
60s,
120s,
300s,
600s

120s Minimum temporal distance between two POI noti�cations.

LocationSpatial 30m,
50m,
100m,
500m,
1, 000m

30m Minimum spatial distance between two location noti�cations.

PoiProximity 30m,
50m,
100m,
500m,
1, 000m

30m Spatial distance at which a POI is considered as close-by.

GeoNoteProximity 30m,
50m,
100m,
500m,
1, 000m

30m Spatial distance at which a note is considered as close-by.
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