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than scanning the surroundings by sight [3]. In fact, ori-
entation, a person’s awareness of position and heading in 
the environment [10, 23], is a challenge for people with se-
vere visual impairment and the main di�culties derive from 
the inability to e�ciently obtain a mental map of the sur-
rounding area while moving. To address this problem, many 
researchers and developers of assistive technology, surveyed 
in [10, 11], have explored technological approaches such as 
laser canes, sonar devices, and GPS navigation tools. 

The design of these technological solutions is typically 
guided by supervised experiments with few participants, such 
as formative studies (e.g. [26]), Wizard-of-Oz experiments 
(e.g. [8]), and evaluation studies (e.g. [17]). These approaches 
may be attractive for the advantages they o↵er. Researchers 
can conduct experiments with prototype applications, or in 
some cases, even prototypes without working software. They 
can also conduct such experiments in controlled situations 
and with users whose characteristics (e.g., form of disability, 
age) are known in advance. However, these approaches are 
also limited in many ways. First, it is not possible to explore 
many real world scenarios. Second, these studies generally 
involve participants that live in close proximity to the phys-
ical location where the experiment is conducted, leading to 
the possibility of cultural bias. Third, these experiments are 
susceptible to the Hawthorne e↵ect [1], where users may act 
di↵erently when they know they are being watched. Finally, 
and most important, these approaches are not scalable both 
in terms of number of involved subjects and length of the 
study as stressed in [10]. 

Nonvisual understanding of the environment is far more 
ine↵ective and ine�cient as well as potentially dangerous 

In the field of assistive technology, large scale user studies 
are hindered by the fact that potential participants are ge-
ographically sparse and longitudinal studies are often time 
consuming. In this contribution, we rely on remote usage 
data to perform large scale and long duration behavior anal-
ysis on users of iMove, a mobile app that supports the ori-
entation of people with visual impairments. 

Exploratory analysis highlights popular functions, com-
mon configuration settings, and usage patterns among iMove 
users. The study shows stark di↵erences between users ac-
cessing the app through VoiceOver and other users, who 
tend to use the app more scarcely and sporadically. Analy-
sis through clustering of VoiceOver iMove user interactions 
discovers four distinct user groups: 1) users interested in sur-
rounding points of interest, 2) users keeping the app active 
for long sessions while in movement, 3) users interacting in 
short bursts to inquire about current location, and 4) users 
querying in bursts about surrounding points of interest and 
addresses. 

Our analysis provides insights into iMove’s user base and 
can inform decisions for tailoring the app to diverse user 
groups, developing future improvements of the software, or 
guiding the design process of similar assistive tools. 

CCS Concepts 
•Human-centered computing ! Accessibility design 
and evaluation methods; •Computing methodologies 
! Cluster analysis; •Social and professional topics ! 
People with disabilities; 

We are interested in advancing state-of-the-art technolo-
gies for supporting orientation and mobility of people with 
visual impairment. For these applications, we want to study 
the following questions. Which are the most frequently used 
functionalities? What are the most common user interaction 
patterns? Can users be grouped based on their interaction 
patterns? How do users benefit from these applications? 
Being able to answer these questions makes it possible not 
only to improve existing applications but also to guide the 
design of similar applications supporting outdoor mobility 
(e.g., [15, 14]) as well as indoor navigation (e.g. [2] among 
others). 

1.  INTRODUCTION 
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To answer these questions, we analyze large scale usage 
data remotely collected from iMove1, a GPS-based mobile 
application that supports outdoor orientation of people with 
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visual impairments. The app provides information about 
nearby “landmarks” that help the user construct a mental 
map of their environment. 

Our analysis is conducted both with inferential and ex-
ploratory methods using statistical tools. We also employ 
machine learning tools for unsupervised discovery of user 
clusters based on common interaction patterns. To the best 
of our knowledge, this is the first study adopting this method-
ology in the field of mobility of people with visual impair-
ments. 

Specifically this paper presents three main contributions: 

•  First, the analysis highlights a number of usage proper-
ties of iMove, including commonly used functions and 
preferences for applications settings. We examine the 
di↵erences both in application use and preferred set-
tings across screen-reader users and other users. We 
also discover clusters of users based on common inter-
action patterns and identify features that are primarily 
responsible for cluster formation. The proposed fea-
ture space is intuitive enough to interpret the meaning 
of the clusters. 

•  Second, we describe our collected dataset and release 
it for use by other researchers. 

•  Third, the analysis methodology proposed in this con-
tribution may be adapted to the study of other appli-
cations in the field of assistive technologies. 

2. RELATED WORK 
Understanding user behavior during interactions with a 

software application is of paramount importance for evalu-
ating the application’s e↵ectiveness, for guiding the iterative 
design process, and for informing the design of similar appli-
cations. However, there are inherent challenges in conduct-
ing behavioral studies both over long periods and with large 
samples of participants with disability. Thus, fewer contri-
butions in the field of assistive technologies adopt method-
ologies involving analysis of collected real-world usage data 
and often, their participants’ demographics are known a pri-
ori or collected through questionnaires. To name a few, [4] 
automatically collected user actions during web browsing to 
assess the accessibility of web pages by visually impaired 
users. Usage log analysis is also performed in [18] to evalu-
ate the localization error of a navigation assistance tool using 
Video Light Communication (VLC) for guiding people with 
visual impairments. In [12], log data from real-world tasks 
over a long period were used to build predictive models in 
distinguishing users by pointing performance. Last, in [22], 
behavior anomalies perceived during user interaction with 
a sensor-enabled smart home environment act as a diagnos-
tic tool for detecting mild cognitive impairments in senior 
patients. 

In the broader field of human computer interaction, where 
the pool of participants tend to be much larger, it is more 
feasible for the researchers to perform behavior analysis on 
large scale datasets available to the research community (e.g. 
[7, 9, 13, 20]). These analyses often combine data-driven ap-
proaches from many fields such as classification, clustering, 
and time-series analysis from machine learning, sentiment 
analysis from natural language processing, and community 
detection from network analysis. The work of Wang et al., 

2016 [25] is the closest to our analysis. The authors ap-
plied natural language processing techniques to detect sim-
ilarity among Facebook social network users. Specifically, 
they analyzed “clickstreams”, timed sequences of interac-
tions with website, and performed hierarchical clustering 
on users’ clickstream to identify common user profiles (e.g., 
those who like others’ pages and those who update their 
status often). 

Prior work in cognitive science related to spacial represen-
tation and navigation in people with visual impairments [24, 
23] discuss limitations in user studies which compare orien-
tation and mobility performance among sighted, early blind, 
and late blind participants. Their discussion on adopted and 
preferred navigation strategies among these users made us 
wonder whether similarities in these strategies also lead to 
similarities across user interaction with supportive orienta-
tion and navigation technologies. Motivated by this ques-
tion, we investigate approaches, similar to Wang et al. [25], 
that automatically discover user clusters based on streams 
of interactions with iMove. However, the link between these 
clusters and underlying user-adopted navigation strategies is 
beyond the scope of this paper. 

3.  iMove APP AND DATASET 
iMove is an iOS application that is accessible through 

VoiceOver screen reader and magnifier. The app informs 
users about outdoor geo-referenced information such as cur-
rent address, nearby Points Of Interest (POIs), and geo-
notes i.e., user-defined notes associated to a geographical 
location. Users can access this information either explicitly, 
e.g., ask for current address in the root screen (Fig. 1(a)) 
and list of nearby POIs (Fig. 1(b)), or periodically while in 
motion by turning on the “Notify me” toggle button in the 
root screen. The frequency of such periodic updates can be 
tuned both in terms of time and proximity (i.e., a minimum 
temporal/spatial distance between two readings). Geo-notes 
can be created and edited as audio recordings or text entries 
(Fig. 1(c)) and they are organized into “routes” (Fig. 1(d)). 

iMove is designed to be highly customizable: users can 
specify the categories of POIs they are interested in, activate 
automatic readings of surrounding information, and modify 
settings related to system verbosity. Therefore, beyond user 
visited screens, actions, and received notification, we also 
collect data related to their settings modifications. 

3.1 Remote Logging System 
Since iMove version 2.0, released on December 8, 2015, 

the application implements a remote logging system that 
makes it possible to collect anonymous app usage informa-
tion. Logging is supported by a client library within iMove 
communicating with a REST server and a non-relational 
database back-end. 

A detailed description of the released dataset is avail-
able online2 . Data was collected in compliance with Euro-
pean regulations3 and user logs were recorded in anonymized 
form. Thus, the dataset does not include location-related 
information, e.g. POI, or user-generated content, e.g. geo-

2http://webmind.di.unimi.it/assetsim16/ 
3Directive 95/46/EC of the European Parliament and of the 
Council of 24 October 1995 on the protection of individuals 
with regard to the processing of personal data and on the 
free movement of such data, OJ L 281, 23.11.1995, 31-50. 



(a) Root screen. (b) POI screen. (c) Edit text-note screen. (d) Route selection screen. 

Figure 1: Main screens of the iMove application. 

notes. To reconstruct user-interaction history, each log in-
cludes a unique pseudo-identifier associated with an anonymized 
user. 

Each log record has two main components. The first com-
ponent contains data about the user and the device on which 
iMove is running: the user’s pseudo-identifier, the device 
model, the system language, whether VoiceOver is enabled 
or not, the application version (we collected data for build 
versions 31 and 32) and log creation timestamps in the user’s 
time zone, UTC, and the server time. 

The second component contains the application usage data. 
In iMove, we partition log entries into four di↵erent cate-
gories of usage data: 

Screen logs capture user navigation between iMove screens. 
Each screen log records the screen name and an “enter” 
or “exit” label when a user enters or exits a screen. 

Action logs record iMove function activation by a user such 
as recording a new speech note. 

Notification logs are generated when the application auto-
matically provides information to the user (e.g. when 
the user gets close to a POI). 

Preference logs are generated every time a user changes 
iMove settings. A preference log lists the name of the 
modified parameter, its old value, and its new value. 

3.2  iMove Dataset Overview 
The iMove dataset was collected during the December 

2015 - April 2016 period and contains a total of 771, 975 log 
records across 17, 624 unique user pseudo-identifiers (µ = 
43.8,� = 105.15) log records per user with range 1 - 7,299. 
From the feedback we received by email and on the app-
store, we realized that a number of users, who we call “in-
cidental” users, installed the application without realizing 
its functionality and its intended use for people with visual 
impairments. For example, some users confused iMove with 
iMovie, a popular application for video editing. 

To filter out these users, we introduce the concept of “in-
teraction session” (or simply, session): a period of time dur-
ing which a user frequently interacts with the application 
(e.g., navigates in the screens, performs actions or receives 
system notifications). A session is extracted from app usage 
data as a sequence of consecutive log entries such that: i) 
the sequence begins with a “screenRootEnter” record, which 
signals that the user opened the main screen of the applica-
tion, and ii) there is at least a 5 minutes gap between the 
session starting log and the previous log. This constraint 
captures the intuition that the user might temporarily exit 
the app for a short time within an interaction session. 

Based on the intuition that users who are uninterested 
in iMove would not use it for more than one session, we 
consider only users having two or more sessions. There are 
a total of 4, 055 such users generating a total of 255, 004 logs 
(µ = 62.89,� = 211.51 logs/user with range 2-7,296). 

4. ANALYSIS 
4.1 iMove Use Properties Across All Users 

We analyze log records from all 4, 055 users with the goal 
of highlighting iMove use properties such as commonly used 
functions and user preferred values for interaction param-
eters. Using both inferential and exploratory methods we 
examine four categories of log records: preferences, screen 
activity, actions, and notifications. 

One interesting aspect of iMove is the support of user-
defined geo-notes, where users can either record a speech 
note associated with a location or type it as text. While 
both options are available, we expect that the former will 
be the one adopted by the users since the purpose of the app 
is to support mobility and it is has been observed that typing 
in mobility is particularly challenging for people with visual 
impairments [16]. Specifically, we formulate and examine 
the following hypothesis: 
H1: iMove users will favor speech over text for input 

modality when creating geo-notes. 



Results and Interpretation 
Preference logs account for 3.41% of the total log records. 
Figure 2 reports, for each preference setting, its default value 
and how many times it has been set to a given value. We 
observe that the parameter “keepUserInformed”, which tog-
gles all notifications, was changed far more frequently. This 
interaction was expected by our intuition that users will fre-
quently toggle o↵ when they do not want to be disturbed by 
notifications. Anticipating such an interaction during the 
design of iMove, we position the toggle button in the root 
screen (see Figure 1(a)). Indeed, 22.2% of the users changed 
this value twice or more, while 20.9% of the users changed 
it more than once for at least one session. 

We also explore log records for other parameters, whose 
semantics are detailed online4 , to assess the default val-
ues provided by iMove. This analysis cannot take into ac-
count only the values changed by the users. Since all logged 
changes necessarily involve modification of default values, 
the logged data does not inform us of how many users in-
tentionally choose to stick with the default value for a given 
parameter. To estimate this, we compute, for each param-
eter, the percentage of users that changed the parameter 
value at least once, among the users that actually visited 
that parameter’s settings screen (values are reported in Fig-
ure 2). 

For example, only 4% of the users who entered the “Set-
tings location” screen actually changed the value of the “lo-
cationSpatialThreshold”parameter. On the other hand, 22% 
of the users who entered the System settings page changed 
the“prevent screen lock”option that by default is set to false. 
Similarly, 23% of the users changed the preference “sayCity” 
and more than 16% of the users changed the “saySpeed”, 
“sayHeading” and “sayCourse”. These are parameters whose 
default values are candidates for change in future versions 
of the app. More generally, we observe the four parameters 
above are all related to the type of information provided to 
the user when a location notification occurs. To avoid ver-
bosity in the application, we limited location notifications to 
the name and number of the street by default. Apparently, 
many users prefer to have more detailed information. 

Screen, Notification, and Action logs account for 
66.23%, 29.55%, and 0.76% of the total 255, 004 log records, 
respectively. Figure 3 illustrates the distribution of these 
records across the subsequent categories. We observe that 
“Location”is the most common notification followed by“POI” 
and the two geo-notes. Interestingly, the “NavigateToPOI” 
function, suggested by many users and introduced with app 
build 31, is the most frequent user action. Geo-notes no-
tifications (“SpeechNote” and “TextNote”) are less frequent 
than “Location” and “POI” notifications, accounting for 3% 
of the total notifications. This is due to the fact that 83% 
of the users never created a geo-note. Among users creating 
a geo-note, the percentage of geo-note notifications is 10% 
of the total notifications. 

Figure 4 shows the distributions of per-user screen, action, 
and notification logs related to speech and text geo-notes 
(box indicates quartiles, center-line indicates median, square 
symbol indicates mean, whiskers indicate 1.5 inter-quartile 
ranges, and crosses indicate outliers). In support of hypoth-
esis H1, there is a significant di↵erence between the pairs of 

4iMove parameter semantics is detailed in http://webmind. 
di.unimi.it/assetsim16/#param semantics. 

these graphs determined by Mann-Whitney U test. Specif-
ically, users visit the “NewSpeechNote” screen significantly 
more times than the “NewTextNote” screen (p < 0.001) and 
perform significantly more “SavedNewSpeechNote” actions 
than “SavedNewTextNote” actions (p < 0.05). Not surpris-
ingly, users receive significanlty more “SpeechNote” notifica-
tions than “TextNote” notifications (p < 0.05). 

4.2 Voiceover-Based User Comparison 
As mentioned in Section 3.1 for each log record we col-

lect the VoiceOver field, which reports whether VoiceOver 
was active when the record was generated. This field is par-
ticularly relevant for our analysis as it allows us to distin-
guish users that are likely to have severe visual impairments. 
Therefore, we partitioned the iMove users into two groups: 
VO-group users (VO-users) have at least one VoiceOver-
active record and NVO-group users (NVO-users), have no 
VoiceOver-active records. 

We formulate and examine the following hypotheses: 

H2: VO-users will have di↵erent settings preferences than 
NVO-users. 

H3: VO-users will make more intense use of iMove as mea-
sured by the number of actions and notifications as well 
as the span of days using the app. 

Results and Interpretation 
VO-group consists of 1, 025 users whereas NVO-group in-
cludes the rest 3, 030 users. We observe that while VO-group 
includes a smaller percentage of the overall iMove users 
(25.28%), the number of records generated by this group 
accounts for more than half of the logs (56.34%) along with 
a higher mean records per user (µ = 140.16,� = 403.91) 
than the NVO-group (µ = 36.74,� = 45.05). We also ob-
serve a small positive correlation in our dataset between the 
number of records for a user and the percentage of records 
with activated VoiceOver for the same user. 

Users in VO-group generated logs with a high mean per-
centage of active-VoiceOver records (1%�100%, µ = 95.26%, 
� = 16.6%). This suggests that, while by definition a user in 
VO-group can only have one record with VoiceOver-active, 
in practice users in VO-group have VoiceOver activated al-
most all the time during use of iMove. We suspect that users 
in VO-group are mostly people with severe visual impair-
ments and a few users with low vision that sporadically ac-
tivate VoiceOver while users in NVO-group either use mag-
nifier in their interaction with the app or are non visually 
impaired (“incidental” users, see Section 3.2). 

Figure 5 illustrates side-by-side the distribution of thresh-
old preference from both groups. In support of hypothesis 
H2, we find that users in VO-group set smaller temporal 
and spatial threshold values determined by Mann-Whitney 
U test (p<0.05). Even though di↵erent threshold parame-
ters have di↵erent semantics, smaller temporal values result 
in more frequent notifications, while smaller spatial values 
for “PoiProximity” and “GeoNoteProximity” indicate pref-
erence for notification only in close proximity to the target 
place (POI or geo-note). These findings suggest that users 
in VO-group prefer to receive information more frequently 
than users in NVO-group and only in close proximity to the 
target. 

To examine hypothesis H3, we consider the number of no-
tifications and actions, as well as the period of iMove use 

http://webmind
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Figure 3: User log records distributed across the screens, actions, and notifications logs. 

per user in each group and compare their mean ranks with 
Mann-Whitney U test. In support of hypothesis H3, we find 
that users in VO-group receive significantly more notifica-
tions (p < 0.001) such as the “Location” notifications shown 
in Figure 6(a)). Similarly, users in VO-group perform sig-
nificantly more actions (p < 0.001), for example Figure 6(b) 
shows how the number of times a VO-user asks for direc-
tions to navigate to a POI is significantly higher than for a 
NVO-user. Users in VO-group use the application for a sig-
nificantly longer period than the NVO-users (p < 0.0001), 
where the period of use is measured as the span of days be-
tween the first and last time a user enters the iMove root 
screen. On average, this duration is of 53.95 days for users 
in VO-group and of 20.45 days for users in NVO-group (as 
shown in Figure 6(c)). 

4.3 User Clustering Based on istreams 
While the exploratory and inferential analyses in the pre-

vious sections reveal interesting patterns, they do not take 
into account the sequential relationship between the log en-
tries. In order to learn richer patterns of interaction, we use 
unsupervised learning techniques on record streams, which 
preserve the temporal structure of the data. We anticipate 
that users naturally fall into clusters based on common in-
teraction patterns with iMove. The automatic discovery of 
these clusters can help us identify: what are the major in-
teraction categories; which is the most prevalent interaction; 
and what is the relationship between di↵erent types of in-
teractions. This clustering is performed on the 1, 025 users 
residing in VO-group, who are likely to have severe visual 
impairments and, as shown above, make intensive use of the 
application. 

Clustering Methodology 
As discussed in related work, HCI researchers have adopted 
prior work in machine learning, natural language processing 
and network analysis, to better understand user behavior, 
with the social network analysis in [25] being the closest to 
our work. Our methodology builds upon previous methods 
to understand and support assistive orientation of people 
with visual impairment. One of the inherent challenges in 
analyzing our data is that users can interact with the app ei-
ther by actively navigating the screens and using their func-
tions, captured by screen and action logs, or by physically 
changing their location thus generating notifications logs. 
We introduce the notion of sessions (defined in Section 3.2) 
into our feature engineering (described below) to yield more 
intuitive and high level descriptions for the discovered clus-
ters. 

Specifically, we represent each user by the stream of inter-
actions (istream) with the app. We map users to a feature 
space extracted from these streams, construct a similarity 
graph by comparing users in this feature space, and identify 
clusters of similar users by graph partitioning. Finally, we 
interpret the meaning of the clusters by isolating primary 
features that are responsible for forming the clusters. To 
assist future researchers in adopting this methodology for 
analysis of their data, we describe the above steps, imple-
mentation, assumptions, and the hyper-parameters used in 
our clustering. 

Obtaining user istream. We define an istream as a 
sequence of interactions between the user and iMove, ex-
tracted from user’s log records ordered by timestamp. It 
captures both the type of the log entry (i.e. screen, action, 
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Figure 4: Distribution of log records highlighting di↵erences between speech and text geo-notes logs. 

Figure 5: Preference log records across users in VO-group and NVO-group. 

or notification) and the magnitude of time gaps between two 
consecutive log entries. Precise time gap values are omitted 
if the log entries belong to the same session (defined in Sec-
tion 3.2) and are represented by the symbol “|” if they denote 
session boundaries. Figure 7 illustrates an example of this 
approach for obtaining a discrete user istream. 

Mapping users to an intuitive feature space. We 
treat istreams as text sentences and adopt n-gram-based 
text representation, a common practice in natural language 
processing. We consider three classes of records: screen en-
ters, actions and notifications. Each of these three classes is 
defined as a set of atomic strings, which are dented by As 
(screen enters), Aa (actions), and An (notifications). For 
example, the string “s-Root” 2 As represents an entrance 
in the root screen; “a-navigateToPOI” 2 Aa represents the 
action of getting the navigation instructions to a POI; and 
“n-Location” 2 An represents the location notification. We 
define an istream as a sequence S = (s1s2...sm), where 
s 2 As [ Aa [ An [ {|} and m is the total length of the 
istream. We define Fn as the set of all possible n-grams (n 
consecutive elements) from all the users’ istream sequences: 
Fn = n-gram(S1) [ n-gram(S2) [ ... [ n-gram(S#users). For 
each user istream we calculate the normalized frequencies of 
the n-grams in Fn. We experimented with di↵erent values of 
n in the n-gram and chose 5-grams for our analysis, though 
4-grams and 3-grams reveal similar clusters. As discussed in 
[25], intuitively, a larger value of n for the n-gram captures 
longer subsequences that are unlikely to repeat as a pattern 
in the istream. For the above calculations we use the NLTK 
platform [5]. 

Constructing a similarity graph. We create a fully 
connected graph where each node represents a user and each 
edge between a pair of users represents the weight based on 
their pairwise similarity score. To calculate the similarity 
score between two users, we compute the cosine similarity 
of their n-gram feature vectors using scikit-learn [21]. 

Clustering and identifying primary features. We 
partition the graph into clusters of similar users with com-

 munity detection using the Louvain method5 described in 
[6]. To interpret cluster meaning, we isolate the primary 
features responsible for a cluster by performing feature se-
lection based on Chi-square statistics (�2) [27]. For each 
cluster, we build a classifier that distinguishes users belong-
ing to that cluster from the remaining users. Then we select 
the top k features with the highest discriminating power in 
separating the two classes using the “SelectKBest” method 
from scikit-learn [21]. 

Results and Interpretation 
The clustering procedure generates 9 clusters with a modu-
larity of 0.47, where modularity [19] is a widely-used metric 
to assess the quality of a graph’s partition into communities. 
Loosely speaking, it measures the density of edges inside 
clusters to edges outside clusters with values in the [�1, 1] 
range, where a higher value indicates better clustering. Five 
of the detected clusters contain a total of 6 outlier users 
which we omit from the following discussion, hence focusing 
on four clusters with many users. Figure 8 visualizes the 
resulting clusters and the top 3 features with the highest 
discriminating power per cluster. 

The first cluster (C1) contains 370 users. From the 5 pri-
mary features: two indicate that short sessions, in which 
the user simply opens the application without further in-
teraction, appear with lower normalized frequency for users 
in C1 than those outside C1; one indicates that long ses-
sions with many consecutive location notifications appear 
with low frequency as well; last, the remaining two primary 
features indicate that sessions in which the user navigates 
iMove screens with the list of POIs and their details have 
higher frequency for users in C1 than the rest. We can infer 
that users in this cluster often open the application to check 
the list of nearby POIs and their details. 

The second clusters (C2) contains 247 users. From the 5 
top features characterizing this cluster, three indicate high 

5Library: http://perso.crans.org/aynaud/communities 

http://perso.crans.org/aynaud/communities
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Figure 6: Di↵erences between users in VO-group and NVO-group. 
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Figure 7: Mapping interaction streams to n-grams. 

frequency of location and POI notification sequences in a sin-
gle session for users in C2; and the remaining two primary 
features indicate low frequency of “empty” sessions, e.g., “|
screenRootEnter | screenRootEnter |”. These features sug-
gest that C2 is a set of users running the application for long 
sessions during which they frequently receive many location 
and POI notifications. 

The third cluster (C3) contains 198 users. In this case four 
of the 5 primary feature denote high frequencies of short 
“empty” sessions; and feature points to lower frequency of 
consecutive location notifications within the same sessions 
for users in C3 than outside C3. These features suggest that 
C3 contains users that starts the application, do not wait 
for any notifications, and then close the application. We 
speculate C3 users often open iMove simply to read (though 
VoiceOver) the current address. 

The fourth cluster (C4) contains 154 users. All 5 primary 
features have high frequencies of short sessions with some 
location and POI notifications. Our interpretation is that 
these users start iMove and listen to one or two notifications 
without any further interactions. 

To get a confirmation of the semantics we associate to 
each cluster, and to further study these clusters, we analyze 
user characteristics across clusters. We consider the average 
session length per user, computed as the distance between 
timestamps of the last and first records in each session. As 
shown in Figure 9(a), users in C2 have longer sessions that 
the other users. This supports our earlier interpretation 
based on the primary features. Figure 9(b) shows that users 
in C2 also have a higher number of sessions, followed by 
users in C3 and C4. We can interpret this observation in 
two ways. First, given the particular use of the app (keeping 
iMove active while moving), users in C2 tend to use it more 
frequently (e.g., every day, commuting to work). A second 
interpretation is that more experienced users of iMove tend 
to use it for longer sessions and hence belong to C2. Distin-
guishing these two cases requires additional analysis that we 
leave as future work. Last, Figure 9(c) shows that C1 users 

have a higher rate of records corresponding to POI details 
screen enters. This is in support of the primary features 
extracted for this cluster, identifying C1 as a user group 
with higher frequency of sessions that explore POI-related 
screens. 

5. CONCLUSIONS AND FUTURE WORK 
This paper presents an analysis of users interactions with 

iMove, a mobile app that supports the orientation of people 
with visual impairment. The initial dataset contains more 
than 17, 000 users, many of which are “incidental” users, not 
really interested in the functions of the app. To filter these 
users out, we adopted a session-based heuristic that elimi-
nates 77% of the users and 67% of the log records. 

The data analysis performed on about 4, 000 remaining 
users, highlights a number of iMove use properties, includ-
ing commonly used functions and users’ preferred values for 
settings parameters. In summary: 

•  While initial iMove settings favored sporadic and brief 
notifications, we observed that users, in particular those 
with severe visual impairments, prefer to have frequent 
and detailed information about the current location, 
which should include city, speed, heading and course. 

•  Applications similar to iMove are recommended to ac-
tivate the “prevent screen lock” option by default. 

•  iMove users favored speech over text for input when 
creating notes associated to geographical locations. 

•  We observed that points of interest (POIs) were im-
portant in iMove functionality. Many users checked 
the list of nearby POIs (the third most visited screen) 
and the most popular action was navigating to a POI. 

•  VoiceOver users (VO-users) received more notifications, 
made intensive use of core iMove functions, and used 
the app for longer periods than other users. While 
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Figure 9: Analysis of the four clusters. 

iMove was designed with blind users in mind, the ob-
served di↵erences with non-VoiceOver users, possibly 
including people with low vision, raises concerns about 
the app design in support of this population. 

iMove was designed with a main user target in mind: peo-
ple with visual impairment that would keep the app active 
along a route to get notifications. By clustering about 1, 000 
iMove VO-users based on common interaction patterns, our 
user target base was successfully identified from one of the 
major clusters (C2), which contained 25% of the VO-users. 
In addition, our clustering method was able to capture and 
provide semantics for the remaining 75% of the VO-users 
with three more clusters; indicating those users who inter-
act with the app in short sessions. We speculate that users 
in those clusters avoid interacting with the app while mov-
ing, because they do not want to be distracted or do not feel 
comfortable walking while holding their smartphone. Hence, 
they use the app in short bursts when they feel comfortable. 

The identification of additional user clusters, other than 
C2, can help improve iMove by designing new interaction 
patterns and functions that support these usage patterns. 
For example, since many users (those in C1) often open the 
app to check nearby POIs, it may be possible to option-
ally show the list of POIs in the first app screen. Similarly, 
we speculate that users in C1 often open the app to check 
current address and close it. To support these operations, 
researchers could investigate di↵erent interaction modalities 
like an accelerometer-based interface to determine when the 
user wants to read the current address while the device is in 
the user’s pocket. 

This contribution highlights a number of possible future 
works. First, the analysis was conducted from data collected 
in a period of four months during which iMove has been 
downloaded on average more than 4, 000 times each month. 
We expect the number of users to grow linearly with time so 
that in few months it will be possible to conduct the same 

analysis on a larger set of users and adopt hierarchical clus-
tering that can potentially refine our higher-level clusters 
into more descriptive sub-clusters. On the other hand, col-
lecting data for a longer period will enable better analysis 
of a user’s learning curve and evolution of interactions over 
time, possibly characterizing the behavior of novice users 
with respect to experienced ones. 

In the future it will also be possible to collect additional 
types of log data. For example, while it is not possible to col-
lect users’ location or user-defined geo-notes due to privacy 
concerns, it may be possible to collect additional context-
related information, like users’ speed and whether users are 
walking or traveling on a bus/car. 

From the point of view of users’ clustering, there are three 
directions along which we intend to extend this contribu-
tion. First, we want to explore hierarchical clusters and di-
mensionality reduction approaches that can further improve 
our clustering quality and preserve an interpretable feature 
space. Second, we intend to investigate the link between 
preferences for user settings and the automatically detected 
user clusters. Third, we intend to experiment with cluster-
ing techniques for e↵ectively identifying “incidental users” so 
that it is possible to remove them more reliably. 

We see the results, methods, and data provided in this pa-
per to improve existing applications, provide guidance, and 
advance the state of art in the field of assistive orientation 
and navigation – ultimately leading to a better experience 
of independent mobility for people with visual impairment. 
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