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Joint bleeding is a common occurrence for people with hemophilia and, if untreated, can result in hemophilic 
arthropathy. Ultrasound imaging has recently emerged as an effective tool to diagnose the distension of a joint 
recess caused by joint bleeding. However, no computer-aided diagnosis tool exists to support the practitioner in 
the diagnosis process. This paper addresses the problem of automatically detecting the subquadricipital recess 
of the knee and assessing whether it is distended in ultrasound images collected from patients with hemophilia. 
After framing the problem, we propose two different approaches: the first one adapts a one-stage object detection 
algorithm for the task, while the second one is a multi-task approach with a classification and a detection 
branch. The experimental evaluation, conducted with 483 annotated images, shows that the solution based on 
object detection alone has a balanced accuracy score of 0.74 with a mean IoU value of 0.66, while the multi-task 
approach has a higher balanced accuracy value (0.78) at the cost of a slightly lower mean IoU value.
1. Introduction

Hemophilia is a hereditary blood coagulation disorder that results 
in an increased risk of bleeding, due to trauma or spontaneously, which 
worsens with the severity of the disease. Bleedings can frequently oc-

cur also inside joints (mostly ankles, knees and elbows) and muscles, 
which together account for around 80% of the bleeding events in pa-

tients with Hemophilia (Roosendaal & Lafeber, 2003, Srivastava et al., 
2020). Joint bleeding causes the distension of the affected joint recess 
and, if recurrent, can result in synovial hyperplasia, osteochondral dam-

age, and hemophilic arthropathy (Hilgartner, 2002). Thus, it is essential 
to promptly recognize joint recess distension.

Physical examination may not be sufficient to diagnose joint recess 
distension, since in the early stage it can be asymptomatic (Plut et al., 
2019). Magnetic Resonance Imagining (MRI) is generally considered the 
gold standard tool for precise evaluation of joints but it is not practical 
for regular follow-up of patients with hemophilia due to the high costs, 
limited availability and long examination times (Plut et al., 2019). An 
alternative solution is ultrasound (US) imaging (Wells, 2006) that, con-

trary to MRI, has a low cost, short examining time and it is widely 
accessible (Joshua et al., 2007). Hemophilia Early Arthropathy Detection 
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with UltraSound (HEAD-US) is a standardized protocol designed to guide 
the practitioner in acquiring relevant US images and interpreting them 
for the diagnosis of joint recess distension in the 6 most commonly af-

fected joints (Martinoli et al., 2013).

Computer aided diagnosis (CAD) systems can improve detection ac-

curacy (Chan et al., 1990) and reduce the image reading time required 
by the practitioners (Doi, 2005). The potential effectiveness of US-based 
CAD systems to support the diagnosis of joint distension in people with 
hemophilia is suggested by recent studies that focus in identifying joint 
health related to injuries (Long et al., 2020).

In this work, we formulate the research problem of supporting 
the physicians in diagnosing joint recess distension in patients with 
hemophilia using a CAD system. The problem consists of detecting the 
joint recess inside US images and classifying it as Distended or Non-

distended. Specifically, we focus on the main joint recess of the knee, 
also called SubQuadricipital Recess (SQR). We consider the SQR longi-

tudinal scan, which is one of the three scans specified in HEAD-US 
protocol for this joint (Martinoli et al., 2013). One prior work ad-

dresses the problem of detecting SQR distension in pediatric patients 
with hemophilia (Tyrrell et al., 2021), but specific details about the 
methodology and the evaluation are not reported.
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Fig. 1. Image acquisition.
Besides formulating the research problem, we also propose two ap-

proaches to address it. The first one, called the Detection approach, 
adopts state-of-the-art object detection to find Distended or Non-

distended SQR inside the US image and returns the detection having the 
highest confidence. The second solution, called the Multi-task approach

uses a multi-task learning process, with the aim of simultaneously de-

tecting the SQR inside the US image and classifying it as Distended or 
Non-distended.

The experiments were conducted on a new dataset of images that 
we collected and annotated due to the lack of other publicly available 
datasets. In our dataset, we collected more than 450 images from 208
adult subjects with hemophilia, which is consistent with other studies in 
the literature (Tyrrell et al., 2021, Wang et al., 2022, Long et al., 2020). 
In the experiments we compared the two proposed solutions among 
themselves and with two baselines, one Classification baseline and one 
Detection baseline. Results reveal that both the Multi-task approach and 
the Detection approach improve over the Classification baseline in terms 
of balanced accuracy. Furthermore, the Multi-task approach outperforms 
both the Classification baseline and the Detection approach in terms of 
balanced accuracy and sensitivity, which, as we motivate in the follow-

ing, is particularly relevant for the given problem. For what concerns 
the detection accuracy, the Detection approach has a slightly better per-

formance than the Multi-task approach, and it remains in line with the 
Detection baseline.

To sum up, the novel contributions of this paper are the following:

• We formulate the problem of detecting and classifying SQR disten-

sions from US images.

• We propose two solutions to tackle this problem.

• We evaluate and compare the proposed solutions on a dataset col-

lected from 208 patients.

2. Problem formulation

In this research, we address the problem of the automated detection 
of the SQR recess and its classification as Distended or Non-distended.

2.1. Ultrasound images

Ultrasound (US) (Chan & Perlas, 2011) is a very popular medical 
imaging technique. It is portable, safe and affordable and therefore 
commonly used in healthcare (Brattain et al., 2018). However, some 
2

limitations of this technique are the high dependence on the operator 
expertise level and possible noisiness of the acquired images (Plut et al., 
2019).

US imaging uses a sound wave signal at high frequencies. The re-

flections of the signal are then measured to represent the image. This 
technique can produce images with a high spatial resolution of the in-

ternal structures of the body, like tendons, bones, blood, and muscles 
(Wells, 2006). The images are represented in grayscale, where each 
pixel value describes the density of the material the signal encounters. 
Light areas represent echogenic tissues (i.e., that reflect sound waves) 
like bones, while dark areas represent anechogenic (i.e., that do not 
reflect sound) structures such as liquids. Another effect to take into ac-

count is that echogenic tissues, such as bone, shield the signal that is 
unable to travel through them, thus making it impossible to detect any-

thing below them. An example is shown in Fig. 1: the patella is clearly 
distinguishable in light color (see the red box) while the area below it 
is almost completely black.

2.2. SQR longitudinal scan

We focus on one of the three scans of the knee joint specified in 
HEAD-US protocol for the collection and diagnosis of joint recess dis-

tension in patients with hemophilia (Martinoli et al., 2013): the SQR 
longitudinal scan. This scan is used to assess SQR distension and con-

tains different characterizing elements (see Fig. 1):

• The femur (blue box) usually appears as a light thick line, approx-

imately horizontal, starting from the left side of the image and 
extending towards the right, often in the lower half of the image.

• The patella (red box) usually appears as a curved light line, posi-

tioned at the right border of the image, often in the top half and 
not entirely captured.

• The quadriceps tendon (brown box) appears as a fascicular struc-

ture composed of echogenic parallel lines (i.e., they appear as thin 
horizontal stripes) that originate from the patella.

The SQR (green box) is positioned between the femur and the patella 
and often contains at least a small quantity of liquid, hence it is dark. In 
some cases, the joint recess membrane can be visible in gray. The SQR 
size and shape vary depending on many factors including whether it is 
distended or not, as explained below.

Fig. 1b shows how the probe must be positioned during the acqui-

sition of the SQR longitudinal scan. In the figure, the yellow box is the 
area that is captured by the US image shown in Fig. 1a, while the green 

box is the SQR. To correctly acquire this type of image, the knee has to 
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Fig. 2. Examples of longitudinal SQR scans.
be bent at about 30◦. The probe must be positioned right at the begin-

ning of the patella and moved horizontally to identify the correct key 
features previously described.

A number of ultrasound probe parameters need to be specified in 
order to properly acquire SQR longitudinal scans. Some of these pa-

rameters need to be personalized for each patient (like gain, focus 
and dynamic range), while the value for other parameters can be pre-

determined, like frequency and depth that in our study were set to 
12 𝑀𝐻𝑧 and 40 − 50 𝑚𝑚, respectively.

2.3. Detection and classification of SQR distension

A joint recess can be distended due to three main reasons: if it is 
filled with synovial liquid, if it is filled with blood (a condition known 
as hemarthrosis), and if its membrane is thicker due to an inflamma-

tion known as synovitis. The approximate recess position can be inferred 
from the location of the three characterizing elements described in Sec-

tion 2.2 (i.e., patella, femur, and tendons): the recess is positioned below 
the tendons, above the right-most end of the femur and on the patella 
bottom-left. To determine the exact position of the recess, the practi-

tioner observes the anechogenic area that is present in the region. The 
recess appears as a dark area surrounded by a lighter membrane.

To determine whether the SQR is distended, we rely on the assess-

ment of the US image by a practitioner. The practitioner observes the 
recess and qualitatively establishes whether it is swollen, a sign that it 
is filled with liquid or that its membrane is thickened. Instead, a non-

distended recess should appear as a thin line. We highlight that the 
use of subjective assessment of imaging data as ground truth is a com-

mon practice in clinical evaluation (Long et al., 2020). Indeed, while 
two alternative approaches are possible, they are impractical: MRI is 
expensive and time consuming (Plut et al., 2019) while the aspiration 
of the liquid through puncture (arthrocentesis) is invasive, particularly 
in patients with bleeding disorders such as hemophilia (Peyvandi et al., 
2016).

Fig. 2 shows three examples of the longitudinal SQR scan. In Fig. 2a 
the SQR is the dark area shown in the green box. In this case the SQR 
is thin, hence it is not distended. Vice versa, in Fig. 2b the SQR is 
much thicker, indicating that it is distended. While Fig. 2a and 2b show 
two characteristic examples with stark differences, there are borderline 
cases where the SQR appears slightly enlarged but it is not distended 
(see Fig. 2c) or it is very slightly distended.

An interview, conducted with physicians from the Angelo Bianchi 
Bonomi Hemophilia and Thrombosis Center (two of which are also au-

thors of this paper), revealed the need for a computer aided tool (CAD) 
supporting the physician in diagnosing SQR distension. The tool can 
be used as a part of a protocol for the early diagnosis of hemarthrosis, 
which is particularly relevant for hemophilic patients (Gualtierotti et 
3

al., 2021, Plut et al., 2019). Indeed, directly identifying hemarthrosis in 
US images is particularly challenging as it requires to distinguish blood 
from synovial fluid and blood clots from synovial hyperplasia, which 
appearsf very similar.

To support the physician during the diagnosis, the CAD tool should 
identify the position of the SQR inside the specified US scan and classify 
it as Distended or Non-distended.

2.4. Problem modeling

In terms of machine learning, the CAD tool needs to implement a 
combination of classification and detection techniques. For what con-

cerns the classification, existing models can be directly applied to the 
given problem, defining two classes, one for the Distended and the other 
for the Non-distended recess.

For what concerns the detection problem, we model the recess as 
the target object to detect. Two possible solutions can be adopted: to 
model two distinct classes of objects (i.e., one for Distended and another 
for Non-distended recesses) or to model a single class (i.e., represent-

ing both Distended and Non-distended recesses). In both cases, the direct 
application of existing object detection algorithms would not correctly 
model the given problem. Indeed, existing object detection techniques 
assume that multiple objects can be detected in a single image, from 
the same or different classes. This is appropriate, for example, in the 
problem of tumor detection, since multiple malign and benign tumors 
can be visible in the same image (Mohiyuddin et al., 2022). Instead, in 
the given problem, we can infer from domain knowledge that a single 
object (i.e., a recess) is visible in each image.

As we show in the following, with the Detection approach we model 
two distinct classes, while with the Multi-task approach we model a 
single class. Also, both solutions extend existing object detection tech-

niques by returning a single object for each input image.

3. Methodology

We propose two solutions for the problem defined in Section 2. The 
first solution, which we name Detection approach, is described in Sec-

tion 3.1. It is based on a state-of-the-art detection technique, adapted 
to solve both the detection and the classification problems. The sec-

ond solution, which we call Multi-task approach (see Section 3.2), is a 
multi-task network with a branch that solves the detection problem and 
another one that solves the classification problem.

3.1. Detection approach

Fig. 3 depicts the network architecture of the Detection approach. 
Each input US image is processed by the YoloV5 (Jocher et al., 2022) 
object detector that returns a set of candidate SQRs, each character-
ized by a confidence value, a bounding box and the label (Distended or 
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Fig. 3. Overall architecture of the Detection approach.
Non-distended). Since in the considered domain the input image actually 
contains exactly one SQR, the Detection Post-processing module selects 
the prediction with the highest confidence and outputs its bounding 
box and its label.

We train the network to recognize two classes of objects: Distended

SQRs and Non-distended SQRs. Since the amount of labeled images in 
this domain is generally scarce, it is difficult to collect a sufficiently 
large dataset to fully train a robust detection network. Therefore, we 
adopt a transfer learning approach (Cheng & Malhi, 2017) to initialize 
the network’s weights. Specifically, we use the pre-trained weights pub-

licly available for the YoloV5 network, trained on the MS COCO dataset 
(Lin et al., 2014). Finally, the network is fine-tuned on the actual dataset 
containing the labeled US images.

YoloV5 is a single stage detector designed to detect different objects 
in an image and directly assign them the corresponding class. YoloV5

is an optimized version of the YoloV4 framework (Bochkovskiy et al., 
2020), that has been widely used in the literature for object detection 
tasks. Specifically, among the five models available in YoloV5, we use 
the large model, which was empirically selected as it achieved the best 
results in preliminary tests. YoloV5 is internally divided into a feature 
extraction sub-network and a detection sub-network. It also adopts a 
specific loss function and an early stop criterion. These four concepts 
are briefly described in the following.

Feature extraction sub-network The Feature Extraction sub-network is a 
Convolutional Neural Network (CNN). Specifically, it is a CSPDark-

net53 network, that was originally proposed in C.-Y. Wang et al. (2020)

and that was shown to be particularly effective for object detection 
(Bochkovskiy et al., 2020) and ultrasound image classification (Jabeen 
et al., 2022).

Detection sub-network The Detection sub-network is divided into a neck

and a head parts.

The overall goal of the neck part is to divide the image into multiple 
small fragments with the objective of simplifying further analysis by 
performing semantic segmentation (by associating categories to pixels) 
as well as instance segmentation (classifying and locating objects at 
pixel level). The head part is a one-stage detector (Redmon & Farhadi, 
4

2018) that processes the features returned by the neck part and outputs 
the bounding boxes of the detected elements along with their predicted 
class.

Loss function We use the default YOLOV5 loss function that is shown 
in Equation (1) and that is computed as the weighted sum of three val-

ues: a) the localization loss (𝐿𝑏𝑜𝑥) is computed with the Complete IoU loss 
function (CIoU) (Zheng et al., 2020), and represents the error in the po-

sition of the predicted bounding box; b) the class loss (𝐿𝑐 ) is computed 
with Binary Cross-Entropy (BCE) and represents the error in classify-

ing the predicted class; c) the objectness loss (𝐿𝑜𝑏𝑗 ) is computed with 
BCE and represents to which extent the predicted bounding box ac-

tually encloses an object of interest. The weights of these values are 
hyper-parameters that need to be empirically tuned (see Section 5.4).

𝐿 = 𝛼𝐿𝑏𝑜𝑥 + 𝛽𝐿𝑜𝑏𝑗 + 𝛾𝐿𝑐 (1)

Early stopping criterion We use the default YOLOV5 early stopping cri-

terion to terminate the training if there are no improvements in the 
results for a given number of training epochs. This default criterion 
considers the mean Average Precision (mAP) of the detection, i.e., the 
ratio of correctly classified bounding boxes considering a given thresh-

old of the IoU with the corresponding ground truth. Note that, in a 
multi-class scenario, this criterion factors for both the correct classifica-

tion and the correct detection of the objects. Specifically, it is computed 
as the weighted sum of the mAP@0.5 and the mAP@0.5:0.95 where a 
weight of 0.1 is given for mAP@0.5, and a weight of 0.9 is given for 
mAP@0.5:0.95 in order to prioritize more accurate bounding boxes de-

tection.

3.2. Multi-task approach

The Detection approach addresses the problem of classifying the SQR 
as distended or not, by selecting the label of the detection with the 
highest confidence. An alternative (and possibly more natural) solution 
would be to classify the entire image. However, this would not provide 
the needed SQR bounding box. For this reason, we propose the Multi-

task approach that pairs image classification and detection (see Fig. 4).

The proposed network is a modified version of the network used 
for the Detection approach. The key modification consists of a Classifica-
tion sub-network that performs the SQR binary classification. The input 
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Fig. 4. Overall architecture of the Multi-task approach.
image is first processed by the Feature Extraction sub-network, that is 
shared for both classification and detection tasks. Then the extracted 
features are simultaneously processed by the Detection sub-network and 
the Classification sub-network. The Classification sub-network processes 
the features and returns the predicted SQR class (i.e., distended or not) 
considering the whole image.

Differently from the Detection approach solution, the goal of the De-

tection sub-network in the Multi-task solution is simply to detect the SQR, 
without providing information about the distension. Hence, the Detec-

tion sub-network network is trained with a single class and it returns a set 
of bounding boxes, all belonging to the same class, each with an associ-

ated confidence value. The Detection Post-processing module selects the 
bounding box with the highest confidence. During the training phase, 
the multi-task loss jointly considers the errors on classification and de-

tection to update the network weights.

3.2.1. Classification sub-network

Fig. 5 shows the Classification sub-network of the Multi-task Approach. 
The first layer of the sub-network is an Adaptive Average Pooling Layer 
in charge of reducing the feature dimensions to a fixed 2-dimensional 
output size. Then, the output is provided to a Flatten Layer, that con-

verts 2-dimensional data to a 1-dimensional array. This array is then 
processed by a fully connected network composed of two hidden layers 
of 1024 and 512 units, respectively. These layers use a ReLu activation 
function. A dropout layer is applied between the two hidden layers 
with the objective of reducing overfitting. Finally, a Softmax layer is in 
charge of providing the most likely class (i.e., Distended/Non-distended). 
The architecture of this network has been determined empirically.

3.2.2. Multi-task loss

Training the multi-task network requires a custom loss function that 
simultaneously takes into account the classification and detection er-

rors. For this reason, we adapt the loss function used for the Detection 
approach by adding a new loss term that represents the errors of the 
5

Classification sub-network. Specifically, we adopt a typical solution in 
Fig. 5. Classification sub-network architecture.

binary classification that consists in computing the classification error 
𝐿𝑐𝑙𝑠 with a BCE function. Another difference with respect to the loss 
function used in the Detection approach, is that, in the Multi-Task ap-

proach, the Detection sub-network is trained with a single class, hence 
there are no possible errors with class prediction. Thus, the 𝐿𝑐 parame-

ter, considered in Equation (1), is always zero. So, the overall multi-task 
loss is computed as the weighted sum of 𝐿𝑏𝑜𝑥, 𝐿𝑜𝑏𝑗 , and 𝐿𝑐𝑙𝑠, as shown 
in Equation (2). These weights are hyper-parameters that need to be 
empirically tuned (see Section 5.4).

𝐿 = 𝛼𝐿𝑏𝑜𝑥 + 𝛽𝐿𝑜𝑏𝑗 + 𝛿𝐿𝑐𝑙𝑠 (2)

Since the datasets in this domain are usually highly unbalanced (e.g., 
in our dataset ≈ 75% of the images are labeled as Non-distended), there 
is the risk that the network favors Non-distended classifications, which 
in turn may increase the number of false negatives. In order to mitigate 

this problem, we adjust the classification loss 𝐿𝑐𝑙𝑠 to give higher error 
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values to false negatives (i.e., Distended SQR classified as Non-distended). 
This is achieved by adding an additional weight to 𝐿𝑐𝑙𝑠 when the ground 
truth is Distended. Specifically, to achieve a balanced classification, the 
weight is computed as the ratio between the Non-distended and Distended

samples in the training set. Thanks to this approach, the errors on the 
Distended samples have a more significant impact on the overall loss.

3.2.3. Multi-task early stopping criterion

As specified above, for the Detection approach, the default YOLOV5

early stopping criterion, based on mAP, is used to stop the training if no 
improvements are detected for a specified number of epochs. Instead, 
for the Multi-task approach, since the detection is computed for a single 
class, the mAP does not account for the classification accuracy but only 
considers the detection accuracy. Thus, for the Multi-task approach, we 
consider a weighted sum of mAP@0.5 for the detection and balanced 
Accuracy for the classification on the validation set. In particular, we 
provide a higher weight (0.7) to the balanced accuracy and a lower one 
to mAP@0.5 (0.3). This is due to the fact that we prefer to be more accu-

rate on the classification, at the cost of identifying slightly less accurate 
(but still informative) bounding boxes. We consider a patience value of 
100 epochs, which means that the training is stopped if the early stop-

ping criterion does not improve for the number of epochs specified by 
the patience value.

4. Dataset

Despite the fact that there are prior works that analyze US images 
of the relevant area (SQR scan of the knee) (Tyrrell et al., 2021, Wang 
et al., 2022, Long et al., 2020), none of these works provides a publicly 
available dataset. For this reason, we collected a new dataset of 483
SQR longitudinal scan images of 208 adult patients with hemophilia, 
aged 44.7 ±18.6, between January 2021 and May 2022. The dataset was 
collected thanks to the collaboration with “Centro Emofilia e Trombosi 
Angelo Bianchi Bonomi” of the polyclinic of Milan, a medical institution 
specialized in hemophilia. Images were annotated by expert physicians 
specifically trained on the diagnosis of the distention of the SQR in 
hemophilic patients. The study was approved by the institution’s ethics 
committee.

Before acquiring the dataset we first defined a standardized data 
acquisition protocol that includes: a) examination procedure based on 
the HEAD-US (Martinoli et al., 2013) protocol; b) guidelines on how to 
use the ultrasound device during the visit, for example defining that the 
joint side (left or right) should be annotated while acquiring the image 
itself; c) a procedure for data extraction from the ultrasound device; d) 
a data pseudo-anonymization procedure.

For each patient, the physician collected several US images from 
various scans in different joints. For this study we selected images of 
the SQR longitudinal scan. Two images of the SQR longitudinal scan 
are typically collected during each visit, one for each knee (left/right) 
but for some patients we only have one image while other patients were 
visited twice (often at a distance of several months), hence having up 
to four images each.

4.1. Data acquisition and annotation

Images were acquired using the Philips Affiniti 50 US device1 by a 
single specialized practitioner during routine visits of hemophilic pa-

tients. When collecting the images, the probe was positioned as shown 
in Fig. 1b and the knee was flexed by 30◦. Each image has a resolution 
of 1024 × 780 and, as shown in Fig. 1a, it contains acquisition parame-

ters (saved as text in the image) and the actual US scan (i.e., the yellow 
rectangle in Fig. 1a), the size of which can vary.

1 www .usa .philips .com /healthcare /product /HC795208 /affiniti -50 -
6

ultrasound -system.
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The annotation procedure is organized into three phases. The first 
phase is image selection: among all images acquired from the US scan-

ner, those representing the SQR longitudinal scan of the knee are se-

lected. The practitioner discards unsuitable images, like those of under-

age patients, of patients with a prosthesis or images with a wrong knee 
bending angle. After this phase, a total of 483 images were selected. The 
second phase is the recess bounding box annotation. Using an annota-

tion tool (Tzutalin, 2015), the practitioner identifies the SQR position 
with the approach presented in Section 2.3 and draws the bounding box 
(a rectangle with edges parallel to the axes).

The third phase is class labeling: using the approach presented in 
Section 2.3, the practitioner evaluates whether the recess is distended 
and enters this information in the annotation tool. Based on this pro-

cedure, out of 483 SQR longitudinal scans, 360 were labeled as Non-

distended and 123 as Distended.

4.2. Pre-processing

We pre-process the collected images to extract the actual US image 
(e.g., the yellow box in Fig. 1a). Indeed, as previously observed (Lin et 
al., 2020, Long et al., 2020) using the entire image as returned by the 
US device can reduce classification accuracy as this part of the image 
does not contain information needed for the required tasks.

As suggested by Tingelhoff et al. (2008), we initially cropped the im-

ages manually. However, this process is time consuming. We therefore 
developed an algorithm to automatically extract the US scan from the 
collected image. Fig. 6 shows the steps of the pre-processing algorithm. 
In the first step, we measure and binarize the gradient of the image; we 
then remove connected pixel groups composed of less than 1000 non-

zero pixels; afterward, we dilate the image to fill small groups of black 
pixels, and we perform an opening operation to remove groups of pix-

els not belonging to the US scan that was merged with it in the previous 
steps. We crop the original image with the bounding box of the white 
area resulting from the previous step. Finally, the images are resized to 
256 × 256 pixels.

All images have been double-checked as part of the annotation 
process and no cropping error was found, showing that the proposed 
automatic pre-processing is reliable.

5. Evaluation

In this section, we describe the experimental evaluation conducted 
on the dataset introduced above. First, we present the baselines used in 
the study. Then, we describe the adopted evaluation methodology, the 
metrics and we describe how we selected the hyper-parameters. Finally, 
we show the results of the two proposed solutions and compare them 
among themselves and with the two baselines. We conclude the section 
by showing examples of the application of the proposed solutions and 
by discussing the results.

5.1. Baselines

To evaluate the effectiveness of the two proposed solutions, we com-

pared them with two baselines, one for each of the two tasks that we 
address: classification and detection.

The Classification baseline is a binary classifier that uses Darknet53

(Redmon & Farhadi, 2018) as feature extractor (i.e., the same one as 
in the Multi-Task and Detection approaches). The feature vector is then 
passed to a fully connected layer that performs the classification. As in 
our proposed solutions, the feature extractor was pre-trained and frozen 
during training. We consider this approach as a baseline for the classifi-

cation recognition rate since it represents a widely adopted solution for 
medical image classification (Sarvamangala & Kulkarni, 2022).

The Detection baseline is a object detector with the same architecture 
as the Detection approach. The main difference with respect to the De-
tection approach is that the Detection baseline detects a single class, the 

http://www.usa.philips.com/healthcare/product/HC795208/affiniti-50-ultrasound-system
http://www.usa.philips.com/healthcare/product/HC795208/affiniti-50-ultrasound-system
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Fig. 6. Intermediate steps of frame extraction procedure.
SQR, without considering whether it is distended or not. The Detection 
baseline outputs the object detected with the highest confidence. We 
selected this solution as a baseline for the detection task because the 
technique is widely adopted in the literature Sarvamangala and Kulka-

rni (2022) and, differently from the Detection approach, it only focuses 
on the SQR detection task without considering the classification task. 
Since the Detection baseline addresses a simpler problem than our solu-

tions, it represents an upper bound for the detection performance of our 
solutions.

In order to fairly compare the four techniques (two baselines and 
the two proposed solutions), the data follows the same pre-processing 
and training pipelines described in Section 5.3. For the same reason, all 
four techniques are evaluated using the same cross-validations splits.

5.2. Metrics

We define two sets of metrics: one for the detection and the other for 
the classification. For what concerns the detection, we measure the av-

erage Intersection over Union (IoU). The IoU between two plane figures 
is defined as the ratio between the area of their intersection and the area 
of their union. When measuring the performance of a given technique, 
for each test image we measure the IoU between the predicted bounding 
box and the ground truth bounding box. Then, we compute the average 
of this metric among all test images. Prior literature commonly con-

siders as correct the detections with an IoU ≥ than 0.5 (Everingham et 
al., 2010). Thus, we consider this as a threshold for an acceptable IoU 
result.

Considering classification, for each image we compare the ground 
truth class with the predicted class hence computing if the result is a 
True Positive (TP), a True Negative (TN), a False Positive (FP), or a 
False Negative (FN). Note that the positive class is Distended and the 
negative class is Non-distended. Then, we used the following classifica-

tion metrics:

• Specificity: measures the ability of the model to identify true nega-

tives. Specificity is defined as 𝑇𝑁

𝑇𝑁+𝐹𝑃

• Sensitivity: measures the ability of the model to identify true posi-

tives. Sensitivity is defined as 𝑇𝑃

𝑇𝑃+𝐹𝑁

• Balanced accuracy: mean between specificity and sensitivity. It is 
considered a sounder metric compared to accuracy when the class 
imbalance is high (Brodersen et al., 2010). Balanced accuracy is 
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defined as 𝑠𝑒𝑛𝑠+𝑠𝑝𝑒𝑐2
Table 1

Example data distribution in Fold 0 of the 5-fold cross-validation.

Fold 0 Train Test Total

Non-distended 289 71 360

Distended 97 26 123

Total 386 97 483

Total patients 166 42 208

• Confidence interval (CI): the 95% confidence interval for the classi-

fication and detection results. The CI provides a reliability measure 
of the results by indicating the range in which the results of the rep-

etitions of the same experiment should fall 95% of the time, thus 
showing the consistency level of the reported results (Ci & Rule, 
1987).

5.3. Evaluation methodology

The evaluation of the recognition rate of the proposed solutions is 
based on a 5-fold cross-validation. In order to avoid high correlation 
bias, the training and the test splits do not have images from the same 
patients in common. The consequence is that we could not exactly di-

vide the dataset in 80% and 20% splits and therefore the splits have a 
slightly different number of images.

An example fold subdivision can be found in Table 1. Each training 
fold was further split: 80% as training set and 20% as validation set. 
During training we used SGD with momentum (Sutskever et al., 2013) 
as optimizer.

5.4. Hyper-parameters selection

In order to properly tune the many hyper-parameters of our net-

work, we adopt an evolutionary approach (Bochinski et al., 2017). 
Given a fitness function, an evolutionary algorithm evaluates the best 
fitting set of hyper-parameters thanks to mutation and cross-over opera-

tions. For the sake of this work, we considered the evolutionary method 
proposed in YOLOV5, that only considers the mutation operation with 
90% of probability and 0.04 of variance. Each mutation step generates 
a new set of hyper-parameters given a combination of the best parents 
from all the previous generations. The fitness functions used for the 
hyper-parameters selection for the Detection approach and the Multi-task 
approach correspond to the early stopping criteria introduced in Sec-
tions 3.1 and 3.2.3, respectively.
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Table 2

Selected hyper-parameters.

Learning rate Dropout SGD momentum 𝛼 𝛽 𝛾 𝛿

Detection 0.00369 – 0.77628 0.06868 0.49062 0.2343 –

Multi-task 0.0018 0.11008 0.62403 0.05427 0.67598 – 0.41855

Table 3

Evaluation results (reported as mean among the folds ± standard deviation).

Balanced accuracy Specificity Sensitivity IoU

Classification baseline 0.73 ± 0.03 0.85 ±0.09 0.61 ± 0.13 –

Detection baseline – – – 0.66 ± 0.02

Detection Approach 0.74 ± 0.07 0.97 ±0.03 0.52 ± 0.12 0.66 ± 0.01*

Multi-task Approach 0.78 ± 0.05 0.92 ± 0.04 0.64 ± 0.09 0.63 ± 0.02

Fig. 7. Confusion matrices.
In order to balance the need for a high number of evolution epochs 
with limited computational resources, we run the evolutionary algo-

rithm only on one fold. We executed our evolutionary algorithm for 
300 epochs on each solution. Considering the Multi-task approach, the 
best results have been obtained at the 193th epoch, while for the De-

tection approach the best set of hyper-parameters was found at the 4th 
epoch. The set of hyper-parameters resulting from evolution has been 
used to evaluate our approaches on the complete cross validation pro-

cedure. The most relevant discovered hyper-parameters are presented 
in Table 2.

Note that 𝛾 is a weight associated to the 𝐿𝑐 loss that is only consid-

ered in the Detection approach, while 𝛿 is a weight associated to the 𝐿𝑐𝑙𝑠

loss that is only considered in Multi-task approach. Finally, the Dropout 
rate is only included in the Classification sub-network of the Multi-task 
approach.

5.5. Results

Table 3 shows the performance of the two baselines and of the two 
proposed solutions. Note that, in order to fairly compare the Detection 
approach with the Detection baseline and the Multi-task approach, the 
average IoU for the Detection approach (marked with *) is computed ig-

noring the predicted class. This means that, for the detection approach, 
we consider the bounding-box of the detection with the highest confi-

dence, without considering if the class of the detected box is actually 
correct.

Since both the early stopping criterion and the hyper-parameters 
selection methods for the Multi-task approach are designed to prior-

itize the classification accuracy at the expense of the detection ac-

curacy, its balanced accuracy is confirmed to be higher than for the 
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Detection approach. Specifically, the Detection approach has a balanced 
accuracy of 0.74 (95% CI [0.73 −0.75]), slightly improving over the Clas-

sification baseline which reaches a balanced accuracy of 0.73 (95% CI 
[0.72 − 0.74]). The Multi-task approach has a balanced accuracy of 0.78
(95% CI [0.77 − 0.79]) outperforming both the Classification baseline and 
the Detection approach. The IoU metric is 0.66 (95% CI [0.65 − 0.66]) for 
both the Detection baseline and the Detection approach and decreases to 
0.63 (95% CI [0.62 − 0.63]) for the Multi-task approach.

As discussed in Section 5.7, these results show that the Multi-task 
approach is the most suitable solution for the considered problem since 
it has an acceptable level of balanced accuracy and IoU according to 
prior literature (Power et al., 2013, Everingham et al., 2010). This 
conclusion is also supported by taking into account the confidence inter-

vals: the Multi-task approach confidence interval range is entirely above 
the thresholds for both classification and detection, and the balanced 
accuracy CI does not intersect with the Detection approach interval, sug-

gesting that its performances are consistently better (Schenker & Gen-

tleman, 2001). The increase in balanced accuracy value of the Multi-task 
approach is largely influenced by the increase in sensitivity. The reason 
for this increase is likely due to the adjusted classification loss in the 
Multi-task approach introduced to mitigate the unbalanced data prob-

lem (see Section 3.2.2). Indeed, considering the confusion matrices in 
Fig. 7, we can observe that the Detection approach has 59 false negatives 
(48%), out of a total of 123 images labeled as Distended, compared to the 
44 false negatives in the Multi-task approach (38%). This improvement 
comes at a cost of a lower specificity value that, however, is less relevant 
than sensitivity in the given domain, as we motivate in Section 5.7.

5.6. Examples

In order to better illustrate how our approaches work, in the follow-
ing we show some examples of correct and incorrect output.
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Fig. 8. Examples of images correctly classified by both solutions. The purple arrow points to the femur, the orange arrow points to the patella, and the green box 

indicates the SQR.

Fig. 8 shows two US images that have been correctly classified by 
both approaches and that are relatively easy to classify by medical ex-

perts. Fig. 8a shows an US image where the femur, the patella and the 
SQR are clearly visible, and the SQR is thin (i.e., not distended). On the 
other hand, Fig. 8b shows an example of a Distended SQR. In this case, 
the SQR is clearly thick and hence distended.

Fig. 9 shows four examples of images that are more challenging to 
classify even by medical experts. This usually happens when there is 
noise in the US scan (as in Fig. 9c) or when the SQR is borderline be-

tween Distended and Non-distended (as in Fig. 9d). Fig. 9a is correctly 
classified by both approaches as Non-distended. Fig. 9b is correctly clas-

sified by the Multi-task approach but not by the Detection approach. Vice 
versa, Fig. 9c is correctly classified by the Detection approach and not by 
the Multi-task approach. Finally, both solutions wrongly classify Fig. 9d.

Considering the detection problem, Fig. 10 shows US images where 
the two approaches detected the SQR with the lowest and the high-

est IoU. In Fig. 10a, the Multi-task approach wrongly detects as SQR 
an image region that is similar to an actual SQR in terms of position 
and shape, resulting in a very low value of IoU (0.33). In this case, 
also the Detection approach can not reliably detect the right target pre-

cisely, and indeed it detects only a small portion of the actual SQR 
(IoU=0.05). Instead, in the example shown in Fig. 10b the Multi-task 
approach accurately detects the SQR (IoU=0.95), while the Detection 
approach identifies the same area with a lower IoU (0.68).

Fig. 10c shows the US image for which the Detection approach pro-

vided the lowest IoU value. The problem is similar to that of Fig. 10a: 
a region is erroneously recognized as a SQR because it is similar to a 
SQR. In this case, the detected bounding box does not overlap with the 
ground truth, hence the IoU is zero. Instead, the Multi-Task approach

basically detects the right target (IOU=0.58).

Fig. 10d shows instead the US image for which the Detection ap-

proach provided the highest IoU value (0.96). In this case, the Multi-task 
approach identifies the right target less precisely, resulting in an IoU of 
0.55.

5.7. Discussion

The experimental evaluation shows that the Multi-task approach re-

sults in a better balanced accuracy compared to the Detection approach. 
This is particularly relevant for two reasons. First, the balanced accu-

racy confidence interval of the Multi-task approach is completely above 
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the threshold of 0.75 that is reported to be a requirement for a medical 
test to be “useful” (Power et al., 2013). Hence the Multi-task approach is 
suitable for our application domain.

Another important property of the Multi-task approach is that it 
yields a substantially higher (+12%) sensitivity value with respect to the 
Detection approach at the cost of a lower (−5%) specificity value. This 
is particularly important because, in the considered domain, sensitivity 
should be privileged over specificity. Indeed, false negatives (captured 
by sensitivity) have worse impact on the patient than false positives 
(captured by specificity). This is due to the fact that a false positive pre-

diction can lead to raise the practitioner’s attention when not needed 
and, in the worse scenario, can lead to over-treatment (e.g., provide 
factor VIII when not actually needed) which generally results in limited 
negative effects on the patient. Instead, a false negative prediction can 
lead to under-treatment, which in turn can lead to permanent articular 
damage (Hilgartner, 2002).

Considering the detection performance, we can observe that when 
the IoU is above 0.5, which is a common threshold to define for a 
“correct” detection, the SQR is intuitively correctly detected and hence 
can support the practitioner during the examination. For example in 
Fig. 10d the red box has an IoU of 0.55 and indeed it correctly detects 
the right area, although the bounding rectangle is slightly shorter and 
larger that the ground truth. With both proposed solutions the IoU is 
above 0.5 in more than 82% of the cases (85% with Detection approach

and 82% with Multi-task approach). In these cases (and also in many 
cases in which the IoU is below 0.5) the target SQR is correctly de-

tected, but the detected bounding box is imprecise. There are only few 
cases in which the techniques detect the wrong target, as in the exam-

ples of Figs. 10a and 10c.

6. Related work

In this section we first report the related work in the broad field 
of US-based CAD systems. Then, in Section 6.2, we report the existing 
literature about the classification and detection of joint recess distention 
in US images and we compare existing works with our solutions.

6.1. US-based CAD systems

Machine Learning (ML) techniques using medical imaging data have 
been investigated to support physicians in diagnosing various condi-

tions (Fujita, 2020). In particular, Ultrasound (US) (Chan & Perlas, 

2011) is a very popular medical imaging technique, often used also as a 
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Fig. 9. Examples of images that are intuitively hard to classify.
data source for Computer-Aided Diagnosis (CAD) systems (Huang et al., 
2018, Brattain et al., 2018). Indeed, despite its high dependence on the 
operator expertise level and possible noisiness of the acquired images 
(Plut et al., 2019), US imaging is easily accessible, safe and affordable 
and therefore commonly used in healthcare (Brattain et al., 2018).

In this problem domain, Convolutional Neural Networks (CNNs) are 
the most frequently used ML architectures, due to their ability to extract 
discriminative features from image data (Chen et al., 2021, Simonyan & 
Zisserman, 2014, Akkus et al., 2019, Sharma et al., 2018). However, the 
development of such systems is often limited by the scarcity of available 
labeled data for the training of the ML models. To mitigate this issue, 
in the literature, transfer learning (Cheng & Malhi, 2017, Liu et al., 
2017) and generative data augmentation approaches (Al-Dhabyani et 
al., 2019, Fujioka et al., 2019) have been proposed.

Classification approaches One commonly used ML approach in US CAD 
systems is the direct classification of the images collected by medical 
experts (Han et al., 2017, Meng et al., 2017). Indeed, different stud-

ies adopted deep learning classification approaches to identify various 
pathologies such as tumors in breast ultrasound (Tanaka et al., 2019, 
Becker et al., 2018, Y. Wang et al., 2020), liver pathologies (Acharya et 
al., 2015, Meng et al., 2017), thyroid nodules (Liu et al., 2017, Song et 
al., 2019), and others (Akkus et al., 2019).

Segmentation and detection approaches Detection and segmentation 
techniques designed to extract Regions of Interest (ROI) in US im-
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ages are also common. For example, one solution extracts a ROI of the 
femoral cartilage from US images using segmentation (Kompella et al., 
2019). Other approaches rely on object detection architectures to de-

tect multiple ROIs within a US image for example to detect and classify 
breast lesions (Cao et al., 2019) or to detect different types of diseases in 
several organs (Zeng et al., 2020). Another example is SonoNet (Baum-

gartner et al., 2017), a real-time detection network that identifies fetal 
standard scan planes in ultrasound 2D images. A method combining seg-

mentation and classification has been proposed for rheumatoid arthritis 
(Hemalatha et al., 2019). Specifically, the work aims at segmenting 
the synovial region in US images of metacarpophalangeal and proxi-

mal interphalangeal joints. The objective is to classify the grade of fluid 
expansion in the synovial region.

Multi-task learning approaches Previous works have explored the multi-

task combination of classification and detection for non-US medical 
images (Yan et al., 2019, Gao et al., 2020, Sainz de Cea et al., 2020, Lin 
et al., 2017, Le et al., 2019). A few contributions exploring multi-task 
learning on US images have also been proposed. Gong et al. propose 
an approach for multi-task localization of the thyroid gland and the de-

tection of nodules within that region, using a shared backbone network 
which is divided into two different decoders for the two tasks (Gong et 
al., 2021). Zhang et al. adopt a multi-task learning algorithm to seg-

ment and classify cancer in Breast US images. They propose to use 
DenseNet121 as backbone, followed by a decoder branch with layers 
connected by attention-gated (AG) units to segment the images (Zhang 
et al., 2021). The second branch performs a classification task that takes 

in input the features extracted by the encoder. We are not aware of 
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Fig. 10. Detection examples. Green represents the ground truth, red and blue the results of the Multi-Task approach and Detection approach, respectively.
multi-task learning algorithms adopted to address the problem of joint 
recess distension detection, and more generally we found no prior works 
proposing multi-task networks to analyze musculoskeletal US images.

6.2. Classification and detection of joint recess distension

US images are commonly used for joint assessment and detection of 
joint recess distension in hemophilic patients. For this task, HEAD-US 
(Martinoli et al., 2013) is a standardized protocol to support physicians 
in acquiring US images of commonly affected joints and formulating a 
diagnosis.

Different solutions have been proposed in the literature to auto-

matically detect and classify joint recess distension. For instance, a 
CNN-based method has been proposed to perform segmentation and 
classification of the Bicipital Peritendinous Effusions on the shoulder 
joint (Lin et al., 2020). Specifically, a VGG-16 (Simonyan & Zisserman, 
2014) network is used for feature extraction, and a second CNN is used 
to classify the distension in three classes (i.e., mild, moderate, and se-

vere). The authors evaluated their method on a dataset of 3801 images, 
including both healthy individuals and individuals with BPE with vari-

ous severity levels, reaching an accuracy of 75%.

Another work considers the knee joints (Long et al., 2020) and uses 
segmentation techniques to classify different types of pathologies inside 
US images, including joint recess distension due to synovial thickening. 
The authors evaluated the method using 600 US images with 6 differ-
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ent classes (i.e., normal knee joint, non-synovial thickening, synovial 
thickening, cyst, tumor, rheumatoid arthritis). The results showed an 
accuracy of ≈ 76%.

A closely related work is ARB U-Net that, similarly to our work, 
extracts Sub-Quadricipital Recess (SQR) of the knee joint from US im-

ages (Wang et al., 2022). Specifically, ARB U-Net is based on deep 
segmentation, using an encoder-decoder method that identifies the ex-

act boundaries of the SQR. The results show a segmentation accuracy 
of 97.1% on a dataset of 450 US images. Differently from that work, be-

sides identifying the SQR area, we also classify it into distended and not 
distended. Indeed, ARB U-Net only considers distended SQR US images.

There are two main differences between our paper and the three 
works mentioned above. First, they all adopt a segmentation based ap-

proach that requires the exact target area to be annotated by an expert 
practitioner. Our approach, instead, only requires the practitioner to 
annotate the SQR bounding box, which is much simpler and fast. The 
second difference is that the three papers above do not focus on patients 
with hemophilia.

A recent abstract paper Tyrrell et al. (2021) considers US images 
of patients with hemophila and addresses the problem of classifying 
distended and not-distended knee recesses. The authors considered 179
US images collected from pediatric patients, using a CNN to perform 
binary classification, reaching an accuracy of 82%. However, that prior 
work does not describe the methodology used for the classification, and 
it does not perform detection, differently from our proposed solutions.

A direct quantitative comparison between previous works and our 
paper is not possible for two reasons. First, the datasets used for the 

evaluation of previous works are not public and hence we cannot eval-



M. Colussi, G. Civitarese, D. Ahmetovic et al.

uate our techniques with the data used in previous works. The second 
reason is that running existing solutions on our dataset is not possible 
neither, because the first three papers mentioned above require the re-

cess segmentation mask, which we do not have, while the last one does 
not report sufficient details to reproduce the proposed solution.

7. Conclusion

Early detection of hemarthrosis is fundamental to reduce the risk of 
under and over treatment for hemophilic patients. A Computer-Aided 
Diagnosis (CAD) tool that detects joint recess distension from ultra-

sound (US) images can support practitioners in diagnosing hemarthrosis 
without the need for expensive and time consuming exams (like MRI). 
We investigate the requirements of such a tool and we frame the prob-

lem in terms of a combination of two typical machine learning tasks: 
classification and detection. Addressing this problem is particularly 
challenging for a number of reasons, including that the position and 
the shape of the joint recess may change considerably across different 
US images, and there can even be borderline cases in which the recess 
is only partially distended. Finally, the datasets in this problem domain 
are generally small and may contain noisy images.

This paper presents two solutions, each providing both recess detec-

tion and classification. Experiments, conducted on images of the SQR 
(i.e., the knee joint recess), focusing on a specific US scan (the SQR lon-

gitudinal scan) show promising results. Indeed, both solutions achieve a 
balanced accuracy of approximately 0.75, a threshold value used in the 
literature to distinguish “useful” medical tests (Power et al., 2013). In 
particular the Multi-task approach achieves a BA value of 0.78. For what 
concerns the detection, the two solutions guarantee a correct detection 
(i.e., IoU > 0.5) in more than 82% of the cases.

We believe that the performance of our solutions can be consider-

ably improved in two possible ways. First, the CAD tool could process 
multiple images of the same joint, possible from different scans or 
from a video feed. The different results computed on the various im-

ages can then be combined to provide a more reliable outcome. The 
second improvement could be the adoption of an ensemble approach, 
in which a number of different models are trained and the CAD tool 
computes the result as a combination of the individual results provided 
by each model. Beyond improving the performance, these possible im-

provements have a potential important advantage: they can identify 
borderline cases (e.g., when there is a disagreement in classification by 
two or more models, or by processing two scans of the same knee). In 
these (hopefully rare) cases, the CAD tool can inform the practitioner 
who can decide, for example, to use a different diagnosing tool (e.g., 
MRI).

As a future work we intend to apply the proposed solutions on 
multiple scans for multiple joints. Actually, we are currently collecting 
images and videos on a total of 6 scans for the knee, the elbow, and the 
ankle. Our final goal is to create a bed-side solution for early hemarthro-

sis diagnosis. The idea is to enable an operator with little training (e.g., 
the patient or a caregiver) to acquire US images with a portable US de-

vice. The system will support the operator during the acquisition by 
identifying the relevant reference points (e.g., the patella), by guiding 
the operator to correctly position the US probe, and by evaluating the 
images in real time to inform the operator that a suitable image was 
collected. The US images will then be transmitted to the practitioner or 
even automatically processed as a part of a screening procedure.
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