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ABSTRACT 
In this paper we propose a computer vision-based technique 
that mines existing spatial image databases for discovery 
of zebra crosswalks in urban settings. Knowing the loca­
tion of crosswalks is critical for a blind person planning a 
trip that includes street crossing. By augmenting existing 
spatial databases (such as Google Maps or OpenStreetMap) 
with this information, a blind traveler may make more in­
formed routing decisions, resulting in greater safety during 
independent travel. 

Our algorithm first searches for zebra crosswalks in satel­
lite images; all candidates thus found are validated against 
spatially registered Google Street View images. This cas­
caded approach enables fast and reliable discovery and lo­
calization of zebra crosswalks in large image datasets. While 
fully automatic, our algorithm could also be complemented 
by a final crowdsourcing validation stage for increased accu­
racy. 

Categories and Subject Descriptors 
H.2.8 [DATABASE MANAGEMENT]: Database Ap­
plications—Spatial databases and GIS ; I.4.8 [IMAGE PRO­
CESSING AND COMPUTER VISION]: Scene Analy­
sis—Object recognition; K.4.2 [COMPUTERS AND SO­
CIETY]: Social Issues—Assistive technologies for persons 
with disabilities 

General Terms 
Algorithms, Human Factors 

Keywords 
Orientation and Mobility, Autonomous navigation, Visual 
impairments and blindness, Satellite and street-level im­
agery, Crowdsourcing 
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1. INTRODUCTION 
Independent travel can be extremely challenging without 

sight. Many blind persons learn (typically with the help 
of an Orientation and Mobility, or O&M, professional) the 
routes that they will traverse routinely [20], for example to 
go to work, school or church. Far fewer attempt independent 
trips to new locations: for example to visit a new friend or 
meet a date at a restaurant. To reach an unfamiliar location, 
a blind person needs to learn the best route to the destina­
tion (which may require taking public transportation); needs 
to follow the route safely while being aware of his or her lo­
cation at all times; and needs to adapt to contingencies, for 
example if a sidewalk is undergoing repair and is not acces­
sible. Each one of these tasks has challenges of its own. In 
particular, the lack of visual access to landmarks (for exam­
ple, the location and layout of a bus stop or the presence 
of a pedestrian traffic light at an intersection) complicates 
the wayfinding process. Thus, a straightforward walk for a 
sighted person could become a complex, disorienting, and 
potentially hazardous endeavor for a blind traveler. 

Technological solutions for the support of blind wayfind­
ing exist. Outdoors, where GPS can be relied upon for ap­
proximate self-localization, a blind person can use accessible 
navigation apps. While these apps cannot substitute proper 
O&M training, they provide the traveler with relevant in­
formation on-the-go, or can be used to preview a route to 
be taken. A navigation tool, though, is only as good as 
the map it draws information from. Existing geographical 
information systems (GIS) lack many features that, while 
accessible by sight, are not available to a blind person. For 
example, Hara et al. found that knowing the detailed layout 
of a bus stop (e.g., the presence of features such as a bench 
or nearby trees) can be extremely useful for a blind person 
for figuring out where to wait for the bus [8]. Other relevant 
information lacking in GIS may include the presence of curb 
ramps (curb cuts) near intersections, or the location of an 
accessible pedestrian signal controlled by a push button. 

We propose a novel technique to detect zebra crossings on 
satellite and street level images. Knowing the location of 
marked crosswalks is important for any traveler. A pedes­
trian, crossing a street outside of a marked crosswalk, has 
to yield the right-of-way to all vehicles1, a difficult task for 
pedestrians with visual impairments. Conversely, a marked 
crosswalk is clearly visible by drivers, grants right-of-way to 
pedestrians, and is highly preferable as a location for street 

1http://mutcd.fhwa.dot.gov 
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crossing in terms of safety. Pedestrians who are blind or 
visually impaired are taught sophisticated O&M strategies 
for orienting themselves to intersections and deciding when 
to cross, using audio and tactile cues and any remaining vi­
sion [3]. However, there may be no non-visual cues available 
to indicate the presence and location of crosswalk markings. 

Blind travelers may benefit from information about the 
location of marked crosswalks in two main ways. First, en­
suring that a route includes street crossing only on clearly 
marked crosswalks would increase safety during a trip. Sec­
ond, this information can be used jointly with other technol­
ogy that supports safe street crossing. For example, recent 
research [4, 1] shows that computer vision-based smartphone 
apps can assist visually impaired pedestrians in finding and 
aligning properly to crosswalks. This approach would be 
greatly enhanced by the ability to ask a GIS whether a cross­
walk is present, even before arriving at the intersection. If a 
crosswalk is present, the geometric information contained in 
the GIS can then be used to help the user aim the camera 
towards the crosswalk, align to it and find other features of 
interest (e.g., walk lights and walk light push buttons). 

2. RELATED WORK 
Satellite and street-level imagery of urban areas in mod­

ern GIS are vast data sources. Computer vision methods 
can be used to extract geo-localized information about ele­
ments captured in these images (e.g., landmarks, vehicles, 
buildings). Satellite images have been used to detect urban 
areas and buildings [19], roads [14] and vehicles [13]. Senlet 
and Elgammal [18] propose sidewalk detection that corrects 
occlusion errors by interpolating available visual data. In 
street level images, Xiao and Quan [21] propose detection of 
buildings, persons and vehicles, while Zamir and Shah [22] 
tackle the issue of localizing user captured photographs. 

There has been an increasing interest in adding specific 
spatial information to existing GIS through crowdsourcing. 
The impact of this phenomenon, called volunteered geo­
graphic information (VGI), is stressed by Goodchild [6]. 
Wheelmap2 allows accessibility issues to be marked on Open-
StreetMap, the largest entirely crowdsourced GIS. Hochmair 
et al. [11] assess bicycle trails quality in OpenStreetMap 
while Kubásek et al. [12] propose a platform for reporting 
illegal dump sites. 

Safe and autonomous urban navigation is difficult for peo­
ple with visual impairments. Smartphone apps that ad­
dress this issue have been proposed. iMove3 informs the 
user about the current address and nearby points of inter­
est. Crosswatch [4] and ZebraLocalizer [1] allow pedestrians 
with visual impairments to detect crosswalks with smart­
phone camera. 

Crowdsourcing is also used to assist users with visual im­
pairments during navigation. BlindSquare4 is a navigation 
app that relies on Foursquare social network for points of 
interest data and OpenStreetMap for street info. VizWiz5 

allows one to ask help of a remote assistant and attach a 
picture to the request. BeMyEyes6 extends this approach 
to allow assistance through video feed. Rice et al. [17] 

2http://wheelmap.org 
3http://www.everywaretechnologies.com/apps/imove 
4http://blindsquare.com/ 
5http://vizwiz.org 
6http://www.bemyeyes.org 

gather information on temporary road accessibility issues 
(e.g., roadworks, potholes). StopFinder [16] helps people 
with visual impairments to locate bus stops by gathering 
data about non-visual landmarks near bus stops. Hara et 
al. [8] improve on this approach by performing crowdsourc­
ing on street-level imagery, without the need to explore an 
area of interest in person. Guy and Truong [7] propose an 
app to gather information on the structure and position of 
nearby crossings through crowdsourcing of street-level im­
ages and to assist users with visual impairments in crossing 
streets. 

Computer vision techniques use satellite and street-level 
images to assist persons with visual impairments. Hara et al. 
[10] propose the detection of inaccessible sidewalks in Google 
Street View images. Murali and Coughlan [15] match 360◦ 

panoramas captured by smartphone to satellite images of 
the surroundings for estimating the user’s position in the 
intersection more precisely than with GPS. 

Hybrid approaches using automated computer vision tech­
niques for menial work and human “Turkers” for more com­
plex tasks have also been proposed. Hara et al. [9] extend 
their previous work to combine crowdsourcing and computer 
vision detection of street accessibility problems, such as ob­
stacles or damaged roads. 

To the best of our knowledge, our technique is the first 
to use satellite and street-level imagery for automated de­
tection of zebra crossings. The detection can be extended 
with crowdsourcing for a final validation step, for adding 
missed crosswalks and for gathering other information on 
the surroundings of the detected crossings that can be of 
use to visually impaired pedestrians in finding and aligning 
to the crossings. Detected crosswalks can be added to a 
crowdsourced GIS and used by travelers with visual impair­
ments during navigation planning. Solutions that detect 
crosswalks using the smartphone video camera [1, 4] can 
benefit from this information to assist the user in finding 
crossings at long distances that cannot be captured by the 
camera. 

3. ZEBRA CROSSING IDENTIFICATION 
Multiple types of road surface markings are used across 

the world to define pedestrian crossings. In the United 
States, at least two different types of pedestrian crossing 
markings are available1 . The transverse marking consists of 
two white lines, perpendicular to the road direction, with 
width between 6in (15cm) and 24in (60cm). The separa­
tion between the two lines is at least 6ft (180cm). Zebra 
crossings, known as “continental crossings” in USA, can be 
visually detected at larger distances than other crosswalk 
markings in the same illumination [5]. Thus, zebra crossings 
are common when the crossing visibility is paramount for the 
pedestrians’ safety, for example near schools and hospitals. 
As such, they also inform drivers to pay more attention to 
the crosswalk, which is desirable for pedestrians with visual 
impairments who cannot rely on sight for noticing incoming 
vehicles. 

While in this contribution we focus on U.S. zebra cross­
ings, the parameters of the detection can be tuned for other 
types of zebra crossings with different geometric character­
istics. Other pedestrian crossing types, such as transverse 
markings, can be detected with the same approach but they 
require significant changes to the detection algorithm and 
therefore they will be considered as future work. 

http:6http://www.bemyeyes.org
http:5http://vizwiz.org
http:4http://blindsquare.com
http:2http://wheelmap.org
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Figure 1: Technique overview 

A zebra crossing is a set of parallel, uniformly painted, 
white stripes on a dark background. The gaps separating the 
white stripes are “dark stripes”. Each stripe is a rectangle 
or, in case of diagonal crossings, a parallelogram. United 
States regulation dictates that zebra crossings be at least 6ft 
(180cm) wide, with white stripes 6in (15cm) to 24in (60cm) 
thick. The thickness of the dark stripes is not regulated. 

3.1 Technique Overview 
The proposed cascade classifier is composed of two main 

steps, as shown in Figure 1. The overall idea is to extract 
candidate zebra crossings from satellite images and then to 
validate them through street view images. The input of the 
procedure is an area A in which to detect the zebra crossings. 

In the first step (see Section 3.2), the satellite images 
covering the input area A are downloaded from an online 
GIS and candidate zebra crossings are extracted from them 
through a computer vision technique. While the technique 
proposed in our solution can be applied to images from dif­
ferent providers, the system we developed gathers images 
from Google Maps. 

The second step (see Section 3.3) acquires, for each candi­
date zebra crossing, nearby street view panoramas (if avail­
able) that might contain the zebra crossing. Zebra crossings 
are detected in street view panoramas and matched with the 
candidate crossings extracted from satellite images. In case 
of a match, the validated zebra crossing is returned and the 
result can be cached for future use. 

It is also possible to extract candidate zebra crossings 
from all street view panoramas in the input area A and 
then validate them with satellite images. However, this 
approach would require downloading all panoramas in A, 
which is time consuming given the Google download lim­
its7 and the large amount of data. In our experiments, 
for an input area of 1.6km2, starting first with satellite im­
ages required downloading ≈ 23MB, followed by 16MB for 
the street view panoramas validation. Conversely, starting 
from street view panoramas would have required download­
ing 637MB, followed by less than 1MB for the subsequent 
validation through satellite images. Overall, the cost (in 
terms of data transfer) of starting with satellite images is 
only about 6% of the reverse procedure that begins with 
street view images. 

7https://developers.google.com/maps/licensing 

3.2 Satellite Image Processing 
Algorithm 1 describes the procedure to acquire the satel­

lite images8 and to process them. To acquire satellite im­
ages, we rely on the Google Static Maps API 9 that allows 
satellite images to be downloaded through HTTP calls. Each 
call specifies the GPS coordinates of the image center, the 
zoom factor and the image resolution. The maximum image 
resolution is constrained so, for large input areas, several 
HTTP requests must be sent. 

We reconstruct the area A by downloading the images 
whose union yields A. Indeed, given a zoom factor and the 
maximum image resolution, it is straightforward to compute 
the size (in meters) of the region covered by each image. 
Thus, A can be partitioned in sub-regions with this max­
imum size (Line 2). Figure 2(a) shows an example of the 
partitioning step. 
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(a) Area A partitioned (b) Extended image 

Figure 2: Area partitioning and extended image 

Since there is a maximum daily number of requests that 
can be submitted to Google Maps, we only download images 
that do not contain roads. This can be achieved through 
the Google Maps Javascript API 10 . These APIs expose a 
method to compute, given an input coordinates, the closest 
position on a road. Before downloading an image centered 
at a point p, we compute the distance from p to the closest 

8Satellite and street view imagery courtesy of Google c© 
9https://developers.google.com/maps/documentation/ 
staticmaps/ 

10https://developers.google.com/maps/documentation/ 
javascript/ 



Algorithm 1 Satellite images acquisition and processing
 
Input: Rectangular geographical area A.
 
Output: a set Z of zebra crossings, each one represented
 
by its position and direction.
 
Method: 
1: Z ← ∅ {algorithm result}
2: partition A in a set R of sub-regions 
3: for all (sub-region r ∈ R) do 
4: if (r does not contain a road) then continue 
5: download satellite image i of area r 
6: generate extended image i' 

7: L ← detect line segments in i' 

8: S ← group line segments in L in candidate crossings 
9: for all (candidate crossing s ∈ S) do 
10: if (s is not a valid crossing) then continue 
11: z ← position and direction of zebra crossing s 
12: merge and add z to Z 
13: end for 
14: end for 
15: return Z 

road. If this distance is larger than half the diagonal length 
of the image, we can infer that the image does not include 
any road, and hence we can avoid downloading it (Line 4). 
Note that this approach has a secondary advantage: it limits 
the number of false positives, i.e., patterns that are similar 
to zebra crossings that are erroneously recognized as such. 

Dividing A in subregions implies that a zebra crossing 
spanning multiple adjacent images may be recognized in 
some of them or may not be recognized in any. Consider 
the example in Figure 3, where the white dashed line is the 
boundary between two adjacent images. To tackle this prob­
lem, we construct an extended image by merging a down­
loaded image with the borders of the 8 surrounding images, 
as shown in Figure 2(b) (see Algorithm 1, Line 6). The 
width of each border is chosen to guarantee the recognition 
of a zebra crossing, even if it is on the border between ad­
jacent images. Still, this approach can result in a crossing 
being recognized in more than one image. We show in the 
following how to merge candidate zebra crossings that cor­
respond to the same crossing and appear in different images. 

Figure 3: Zebra crossing on two adjacent images 

The detection technique extracts the line segments cor­
responding to the long edges of stripes from the image (see 
Figure 4(a)) using a customized version of the EDLines algo­
rithm [2] (Line 7). The line segments are grouped into sets 
of stripes based on horizontal distance, vertical distance and 
parallelism criteria (Line 8). The resulting candidate cross­

ings (see Figure 4(b)) are validated based on the stripes 
number and color intensity and the candidate crossings that 
are not validated are discarded (Line 10). 

Our technique is adapted from the ZebraLocalizer algo­
rithm for zebra crossing recognition on smartphones [1]. Dif­
ferently from ZebraLocalizer, our approach does not require 
reconstructing the ground plane since satellite images are 
not subject to perspective distortion, being acquired from 
above the ground plane. 

(a) Line segments (b) Crossing 

Figure 4: Satellite detection steps 

If a set of stripes is not discarded, it is assumed to be a 
zebra crossing and it is characterized by its direction and po­
sition. Its direction is easily derived as the angle of the line 
perpendicular to the stripes, which should all share nearly 
the same angle, due to the parallelism criterion (Line 8). 
The zebra crossing’s position is represented as the quadri­
lateral bounding the detected set of stripes, as depicted in 
Figure 4(b). 

Finally, the detected zebra crossing is added to the set of 
results Z. As mentioned above, the same zebra crossing may 
be recognized in two or more different images. Hence, when 
inserting z in Z (Line 12), we first check if Z already contains 
a zebra crossing with approximately the same position and 
direction as z. If a similar crossing is found, the two crossings 
are merged. 

3.3 Street View Image Processing 
Algorithm 2 describes the procedure to validate a sin­

gle zebra crossing through the acquisition and processing 
of street view panoramas. The procedure is iterated for all 
zebra crossings detected during satellite image processing. 
In Google Maps, street view panoramas are spherical images 
(i.e., they span 360◦ horizontally and 180◦ vertically) posi­
tioned at discrete coordinates distributed non-uniformly in 
space and they are structured in a graph that closely follows 
the road graph. Through the Google Maps Javascript API 
it is possible to request the panorama closest to a point in 
space and to retrieve the coordinates of panoramas directly 
linked to a given one. 

For an input zebra crossing z the algorithm first identi­
fies the coordinates c0 of the panorama closest to it. The 
panorama centered in c0 in some cases does not contain z 
due to occlusion by the car used to take the pictures, or by 
other objects and vehicles. Thus, our algorithm processes 
c0 as well as other nearby panoramas until the crossing has 
been validated or all nearby panoramas have been processed. 
The set of coordinates of panoramas still to be processed is 
represented by C, initially containing only c0. 



Algorithm 2 Street view images acquisition and processing
 
Input: candidate zebra crossing z ∈ Z represented by its
 
position and direction.
 
Output: a validated zebra crossing z ' represented by its
 
position and direction or null if not validated.
 
Method:
 
1: c0 ← get the coordinates of panorama closest to z 
2: C ← {c0} {Set of panoramas to be processed}
3: while (C  = ∅) do 
4: c ← pop element from C 
5: α ← direction angle from c to z 
6: i ← image at coordinates c with direction alpha 
7: L ← detect line segments in i 

L ' 8: ← rectify line segments in L 
9: S ← group line segments in L ' in candidate crossings 
10:	 for all (s ∈ S) do 
11: if (s is a valid crossing) then 
12: z ' ← position and direction of zebra crossing s 
13: if (z matches z ' ) then return z ' 

14: end if 
15:	 end for 
16:	 push in C coordinates of panoramas directly linked to 

c and close to z 
17: end while 
18: return null 

For each panorama centered in coordinates c ∈ C, the 
algorithm identifies a small portion of the spherical image 
that actually needs to be acquired. On the vertical axis, we 
use a fixed pitch (−30◦) and vertical field of view (60◦) in 
order to exclude the portion of the panorama occluded by 
the car taking the picture and the portion of the panorama 
above the horizon, which clearly does not contain crossings. 
For capturing the correct horizontal portion of the panorama 
we first compute the direction angle α that, starting from 
coordinates c, points towards the center of z (see Line 5). 
This angle represents the center, along the horizontal axis, of 
the acquired image. A horizontal field of view of 60◦, given 
the pitch, vertical field of view, and a camera height of 2.5m, 
guarantees to include, at minimum distance, a span of 3.5m. 
Considering the United States regulation, this is sufficient 
to include from 5 to 23 stripes of a crossing, sufficient for a 
correct detection. See Figures 5(a) and 5(b). 
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Figure 5: Horizontal and vertical field of view 

The usage of fixed parameters simplifies a number of for­
mulae, including those for image rectification (see below). 
As future work these parameters could be derived from the 
relative position of c and z. For example smaller pitch values 
can be used if z is closer to c. 

The image i containing a portion of the panorama at coor­
dinates c and with direction α is acquired and then processed 
with an adapted version of ZebraLocalizer [1] algorithm to 
reconstruct the coordinates of line segments on the ground 
plane (Lines 7 to 11). The difference with ZebraLocalizer is 
that, since camera height and pitch are fixed, we can pre­
compute the homography to reconstruct the ground plane 
in all acquired images. Figures 6(b) and 6(c) show an exam­
ple of ground plane reconstruction. Rectified line segments 
are then grouped and validated based on the same criteria 
described in Section 3.2. 

If the set S of identified stripes represents a valid crossing 
z ' , its position and orientation are compared with those of 
z. Clearly, even if z ' actually represents the same crossing 
as z, the bounding quadrilaterals of the two crossings rarely 
have exactly the same coordinates, due to a number of ap­
proximations introduced in the computation, including GPS 
imprecision and the fact that not all stripes of a zebra cross­
ing are always identified. For example, the same crossing 
detected in a satellite image (Figure 6(a)) and detected in a 
street view panorama (Figure 6(b)) has different GPS coor­
dinates, as shown in Figure 6(d). Similarly, the orientation 
of z and z ' can differ. 

Thus, there is a tolerance in the comparison of z with z ' 

and a system parameter defines the maximum distance such 
that z and z ' are considered the same crossing. Analogously, 
a system parameter defines the maximum angular distance 
between the orientation of z and z ' . If z and z ' represent 
the same crossing, then z ' is returned as a valid crossing. 

If the set of stripes S does not represent a valid crossing or 
if z ' does not represent the same crossing as z, the algorithm 
populates C with the coordinates of other panoramas close 
to c (if any). The algorithm adds to C the coordinates of 
panoramas directly linked to c that have not already been 
processed during the validation of z and that are close to z 
(the maximum distance is bounded by a system parameter). 
Eventually either z is validated or all nearby street view 
panoramas are processed (i.e.: C = ∅); in this case null is 
returned. 

4. EXPERIMENTAL EVALUATION 
This section reports the results of the experiments con­

ducted to evaluate our technique over a dense urban region 
of San Francisco. These results are quantified in terms of 
precision (the fraction of detected zebra crossings that are 
true detections) and recall (the fraction of true zebra cross­
ings that are correctly detected). We demonstrate that our 
cascade classifier is powerful enough to identify nearly all 
zebra crossings, with only a small number of false positive 
candidates that need to be eliminated in a subsequent stage 
of crowdsourcing-based image inspection. 

4.1	 Experimental setting 
To evaluate the proposed technique we considered a rect­

angular urban area A in San Francisco, with sides of length 
1529m and 1025m and an area of 1.6km2 . The area coor­
dinates11, along with detected crossing portions, true pos­
itives (green pins) and false positives (red pins) have been 
published12 . 

11http://webmind.di.unimi.it/satzebra/satzebra.kml 
12http://webmind.di.unimi.it/satzebra 



(a) Satellite detection (b) Street view detection (c) Reconstructed street view (d) imprecision in detection 

Figure 6: Imprecision in GPS coordinates between satellite and street view detected crossings 

A total of 141 zebra crossings and 152 transverse pedes­
trian crossings have been detected in the satellite and street 
view images of the area by a human operator. In the follow­
ing, a zebra crossing is considered to be detected correctly 
if at least 4 consecutive stripes of the crossing have been 
detected correctly. 

Concerning satellite images, with the maximum zoom level 
available in Google maps for the considered area, each im­
age with maximum resolution of 640 × 640 pixels covers 
38m × 38m. Thus, a total of 1149 satellite images are re­
quired to cover A. Since the size of each image is approx­
imately 46KB, the size of all images covering A is 52MB. 
The total number of street view panoramas available in A 
is 1425. As we show in the following, we acquired only a 
small portion of these panoramas, each having a resolution 
of 640 × 640 pixels and, on average, a size of 51KB. 

The tests were conducted on a laptop computer with Intel 
core i7 4500u 1.8GHz CPU and 8GB RAM. 

4.2 Satellite image processing evaluation 
As reported in Algorithm 1, only images containing streets 

are actually considered. With this approach a total of 791 
images actually need to be acquired with a total size of 
35MB. This means that, in A, our technique avoids down­
loading about one third of the images that would be other­
wise required. In areas where the density of the road network 
is lower (like in suburban or rural areas), we can expect that 
an even higher percentage of images can be omitted. 

The recognition process described in Algorithm 1 (Lines 7­
8) detects a total of 773 zebra crossing portions. Often a 
single zebra crossing is detected as two or more zebra cross­
ing portions. For example this can happen when a vehicle 
is visible in the middle of the crossing, causing a partial oc­
clusion. By merging these crossing portions (Algorithm 1, 
Line 12) our technique identifies 199 candidate crossings. 

Out of 199 detected candidate crossings, 137 correspond 
to actual zebra crossings. Since the number of actual zebra 
crossings in A is 141, recall is 0.97. A few zebra crossings 
are not detected due to discolored or faded paint (see Fig­
ure 7(a)) while others are almost totally covered by trees, 
shadows or vehicles (see Figure 7(b)). The process also 
yields 62 false positives, hence the precision is 0.69. In many 
cases, false positives correspond to rooftops (Figure 7(c)) or 
other parts of buildings (Figure 7(d)). 

These recall and precision scores refer to parameter set­
tings tuned for the highest possible recall so that almost no 
crosswalks are missed by the algorithm. Naturally, perfect 

recall is difficult to reach and comes at the expense of a 
greater number of false positives, i.e., a smaller precision. 
However, considering that a final crowdsourcing validation 
step is possible, it is much easier for crowdworkers to rule 
out false positives than it is to find false negatives, which 
requires scrutinizing the entire area of interest to identify 
crosswalks that have not been detected by the algorithm. 
Parameters can be tuned for different trade-off levels be­
tween precision and recall. The Pareto frontier shown in 
Figure 8 lists the best precision and recall trade-offs ob­
tained during the tuning of the parameters. 

Regarding computation time, we consider the CPU-bound 
process only and we ignore the time to acquire images, which 
mainly depends on the quality of the network connection. 
The CPU-bound computation required for the extraction of 
candidate crossings in a single image is 180ms. Running 
the algorithm sequentially on the 791 images acquired for A 
requires a total of 142s. However, note that the process can 
be easily parallelized and thus it would be straightforward 
to further reduce computation time. 

4.3 Street view image processing evaluation 
For each candidate crossing in Z (the set of candidate 

crossings computed with satellite images), there are on av­
erage 5.7 nearby street view panoramas. By considering true 
positives only (i.e., candidate crossings that represent actual 
crossings), the average number of nearby street view panora­
mas increases to 7.3 and only 2 candidate crossings that 
represent actual crossings have no street view panoramas 
in their vicinity (less than 1.5%). Conversely, false positive 
candidate crossings have a much lower number of nearby 
street view panoramas (on average 2.6). Indeed, 19 false 
positives (30% of the total) do not have any nearby street 
view panorama and 46 false positives have 3 or fewer sur­
rounding panoramas (74%). This is caused by the fact that, 
as observed previously, many false positives are located on 
rooftops or other areas that are not in the immediate vicinity 
of streets. 

As reported in Algorithm 2, our solution acquires nearby 
panoramas iteratively, until the candidate crossing is val­
idated. On average, considering true positives, 1.8 street 
view panoramas are acquired for each candidate crossing. 
In 76% of the cases a true positive crossing is validated with 
at most two panoramas, and up to 56% are validated by pro­
cessing a single street view panorama (see Figure 9). Con­
versely, filtering out false positives requires processing all 
available nearby street view panoramas. Overall, the tech­



(a) FN - discoloration (b) FN - hidden by trees (c) FP - roof pattern (d) FP - stairs pattern 

Figure 7: False negatives (FN) and false positives (FP) in satellite detection and street view validation 
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nique requires acquiring and processing a total of 406 street 
view panoramas for A (≈ 2 for each candidate crossing). 
The total size of these images is 20.3MB. 
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The street view-based validation (tuned for the best recall 
score) filters out 58 out of 62 false positives identified in 
the previous step, yielding a precision score of 0.97. The 
few false positives still present are caused by patterns very 
similar to zebra crossings, like the stairs in Figure 7(d). Of 
137 true positives in Z, 134 are validated, resulting in a recall 
score of 0.98. Overall, the recall score of the whole procedure 
(including both satellite and street view detection) is 0.95. 

As with the satellite detection, different parameter set­
tings yield different precision and recall scores during the 
validation. Figure 8 shows the settings that yield the best 
precision and recall trade-offs during the validation. 

Regarding computation time, each street view image can 
be processed in 46ms and hence the total computation time 
is 18.5s. Overall, considering the two detection steps (from 

satellite images and street view panoramas), the total CPU­
bound computation time to process A is 161s. 

5. DISCUSSION AND FUTURE WORK 
While the accuracy of the detection is high, since no com­

puter vision algorithm is perfectly accurate, we envision a 
subsequent stage of processing based on online crowdsourc­
ing (as in [10]) to rule out false positives and identify false 
negatives. A web service will be offered to allow users to 
submit crossings that have been missed (possibly also inte­
grated in a future navigation software). For pruning false 
positives, instead, we intend to leverage crowdsourcing ser­
vices such as Amazon Mechanical Turk13 and propose that 
zebra crossings detected by our computer vision algorithm 
be referred to crowdworkers, who will decide whether zebra 
crossings are indeed present in the images. The crossings 
database could also be augmented with auxiliary informa­
tion such as the presence and location of important features 
such as walk lights (which could be monitored in real time 
by the app) and walk push buttons. These could be also 
added by users or automatically by a visual detection app. 

The resulting crosswalk database could be accessed by vi­
sually impaired pedestrians through the use of a GPS nav­
igation smartphone app. The app could identify the user’s 
current coordinates and look up information about nearby 
zebras, such as their number, placement and orientation. 
Existing apps such as Intersection Explorer and Nearby Ex­
plorer (for Android) and Sendero GPS LookAround and In­
tersection (for iPhone) could be modified to incorporate in­
formation from the crosswalk database. Computer vision­
based detection apps on smartphones, such as Zebralocal­
izer [1] and Crosswatch [4], could additionally use the database 
to help users to approach and align properly to crosswalks 
even when they are not yet detected by the app. 

Another important way in which the crosswalk database 
could be used by blind and visually impaired pedestrians 
is for help with offline route planning, which could be con­
ducted by a traveler on his/her smartphone or computer 
from home, work or other indoor location before embark­
ing on a trip. For example, a route-planning algorithm may 
weigh several criteria in determining an optimal route, in­
cluding the number of non-zebra crossings encountered on 
the route (which are less desirable to traverse than zebra 
crossings) as well as standard criteria such as total distance 
traversed. The crosswalk database could also be augmented 
with additional information, including temporary hazards or 
barriers due to road construction, etc. 

13https://www.mturk.com 

http:13https://www.mturk.com


6. CONCLUSIONS 
Our contribution presents a technique that uses computer 

vision algorithms to detect and localize zebra crosswalks 
with high accuracy in existing spatial images databases such 
as Google satellite and Street View. To the best of our 
knowledge, these features are not already marked in exist­
ing GIS services and we argue that knowing the position of 
existing crosswalks could be useful to travelers with visual 
impairments for planning the navigation, finding pedestrian 
crosswalks and crossing roads. 

For the detection we propose a cascade classifier derived 
from the algorithm we previously proposed for zebra cross­
ing recognition on smartphones [1]. The proposed solution 
identifies potential crossings in street areas in satellite im­
ages and validates potential crossings with nearby Street 
View panoramic images. 

We evaluated the proposed solution on a 1.6km2 area in 
San Francisco in which the pedestrian crossings were previ­
ously manually labeled. The dataset contained of 791 satel­
lite images limited to street areas and 406 portions of Street 
View images referring to potential crossings. The technique 
achieved a precision of 0.97 and a recall of 0.95 with a com­
putation time of 161s for the whole area. 

The proposed approach is also complementary to exist­
ing solutions [1, 4] that leverage computer vision techniques 
for detecting pedestrian crossings using video cameras on 
mobile devices. A technique leveraging both data sources 
would be a helpful tool for assisting people with visual im­
pairments to align to and safely and independently to cross 
roads. 
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