
Zebra Crossing Spotter: Automatic Population of Spatial

Databases for Increased Safety of Blind Travelers

Dragan Ahmetovic

Università degli Studi di Milano

dragan.ahmetovic@unimi.it

James M. Coughlan

Smith-Kettlewell Eye Research Institute
coughlan@ski.org

Roberto Manduchi

University of California Santa Cruz

manduchi@soe.ucsc.edu

Sergio Mascetti

Università degli Studi di Milano

sergio.mascetti@unimi.it

ABSTRACT
In this paper we propose a computer vision-based technique
that mines existing spatial image databases for discovery
of zebra crosswalks in urban settings. Knowing the loca­
tion of crosswalks is critical for a blind person planning a
trip that includes street crossing. By augmenting existing
spatial databases (such as Google Maps or OpenStreetMap)
with this information, a blind traveler may make more in­
formed routing decisions, resulting in greater safety during
independent travel.

Our algorithm first searches for zebra crosswalks in satel­
lite images; all candidates thus found are validated against
spatially registered Google Street View images. This cas­
caded approach enables fast and reliable discovery and lo­
calization of zebra crosswalks in large image datasets. While
fully automatic, our algorithm could also be complemented
by a final crowdsourcing validation stage for increased accu­
racy.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap­
plications—Spatial databases and GIS ; I.4.8 [IMAGE PRO­
CESSING AND COMPUTER VISION]: Scene Analy­
sis—Object recognition; K.4.2 [COMPUTERS AND SO­
CIETY]: Social Issues—Assistive technologies for persons
with disabilities

General Terms
Algorithms, Human Factors

Keywords
Orientation and Mobility, Autonomous navigation, Visual
impairments and blindness, Satellite and street-level im­
agery, Crowdsourcing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ASSETS’15, October 26–28, 2015, Lisbon, Portugal.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3400-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2700648.2809847 .

1. INTRODUCTION
Independent travel can be extremely challenging without

sight. Many blind persons learn (typically with the help
of an Orientation and Mobility, or O&M, professional) the
routes that they will traverse routinely [20], for example to
go to work, school or church. Far fewer attempt independent
trips to new locations: for example to visit a new friend or
meet a date at a restaurant. To reach an unfamiliar location,
a blind person needs to learn the best route to the destina­
tion (which may require taking public transportation); needs
to follow the route safely while being aware of his or her lo­
cation at all times; and needs to adapt to contingencies, for
example if a sidewalk is undergoing repair and is not acces­
sible. Each one of these tasks has challenges of its own. In
particular, the lack of visual access to landmarks (for exam­
ple, the location and layout of a bus stop or the presence
of a pedestrian traffic light at an intersection) complicates
the wayfinding process. Thus, a straightforward walk for a
sighted person could become a complex, disorienting, and
potentially hazardous endeavor for a blind traveler.

Technological solutions for the support of blind wayfind­
ing exist. Outdoors, where GPS can be relied upon for ap­
proximate self-localization, a blind person can use accessible
navigation apps. While these apps cannot substitute proper
O&M training, they provide the traveler with relevant in­
formation on-the-go, or can be used to preview a route to
be taken. A navigation tool, though, is only as good as
the map it draws information from. Existing geographical
information systems (GIS) lack many features that, while
accessible by sight, are not available to a blind person. For
example, Hara et al. found that knowing the detailed layout
of a bus stop (e.g., the presence of features such as a bench
or nearby trees) can be extremely useful for a blind person
for figuring out where to wait for the bus [8]. Other relevant
information lacking in GIS may include the presence of curb
ramps (curb cuts) near intersections, or the location of an
accessible pedestrian signal controlled by a push button.

We propose a novel technique to detect zebra crossings on
satellite and street level images. Knowing the location of
marked crosswalks is important for any traveler. A pedes­
trian, crossing a street outside of a marked crosswalk, has
to yield the right-of-way to all vehicles1, a difficult task for
pedestrians with visual impairments. Conversely, a marked
crosswalk is clearly visible by drivers, grants right-of-way to
pedestrians, and is highly preferable as a location for street

1http://mutcd.fhwa.dot.gov

http:1http://mutcd.fhwa.dot.gov
http://dx.doi.org/10.1145/2700648.2809847
mailto:Permissions@acm.org
mailto:sergio.mascetti@unimi.it
mailto:manduchi@soe.ucsc.edu
mailto:coughlan@ski.org
mailto:dragan.ahmetovic@unimi.it

crossing in terms of safety. Pedestrians who are blind or
visually impaired are taught sophisticated O&M strategies
for orienting themselves to intersections and deciding when
to cross, using audio and tactile cues and any remaining vi­
sion [3]. However, there may be no non-visual cues available
to indicate the presence and location of crosswalk markings.

Blind travelers may benefit from information about the
location of marked crosswalks in two main ways. First, en­
suring that a route includes street crossing only on clearly
marked crosswalks would increase safety during a trip. Sec­
ond, this information can be used jointly with other technol­
ogy that supports safe street crossing. For example, recent
research [4, 1] shows that computer vision-based smartphone
apps can assist visually impaired pedestrians in finding and
aligning properly to crosswalks. This approach would be
greatly enhanced by the ability to ask a GIS whether a cross­
walk is present, even before arriving at the intersection. If a
crosswalk is present, the geometric information contained in
the GIS can then be used to help the user aim the camera
towards the crosswalk, align to it and find other features of
interest (e.g., walk lights and walk light push buttons).

2. RELATED WORK
Satellite and street-level imagery of urban areas in mod­

ern GIS are vast data sources. Computer vision methods
can be used to extract geo-localized information about ele­
ments captured in these images (e.g., landmarks, vehicles,
buildings). Satellite images have been used to detect urban
areas and buildings [19], roads [14] and vehicles [13]. Senlet
and Elgammal [18] propose sidewalk detection that corrects
occlusion errors by interpolating available visual data. In
street level images, Xiao and Quan [21] propose detection of
buildings, persons and vehicles, while Zamir and Shah [22]
tackle the issue of localizing user captured photographs.

There has been an increasing interest in adding specific
spatial information to existing GIS through crowdsourcing.
The impact of this phenomenon, called volunteered geo­
graphic information (VGI), is stressed by Goodchild [6].
Wheelmap2 allows accessibility issues to be marked on Open-
StreetMap, the largest entirely crowdsourced GIS. Hochmair
et al. [11] assess bicycle trails quality in OpenStreetMap
while Kubásek et al. [12] propose a platform for reporting
illegal dump sites.

Safe and autonomous urban navigation is difficult for peo­
ple with visual impairments. Smartphone apps that ad­
dress this issue have been proposed. iMove3 informs the
user about the current address and nearby points of inter­
est. Crosswatch [4] and ZebraLocalizer [1] allow pedestrians
with visual impairments to detect crosswalks with smart­
phone camera.

Crowdsourcing is also used to assist users with visual im­
pairments during navigation. BlindSquare4 is a navigation
app that relies on Foursquare social network for points of
interest data and OpenStreetMap for street info. VizWiz5

allows one to ask help of a remote assistant and attach a
picture to the request. BeMyEyes6 extends this approach
to allow assistance through video feed. Rice et al. [17]

2http://wheelmap.org
3http://www.everywaretechnologies.com/apps/imove
4http://blindsquare.com/
5http://vizwiz.org
6http://www.bemyeyes.org

gather information on temporary road accessibility issues
(e.g., roadworks, potholes). StopFinder [16] helps people
with visual impairments to locate bus stops by gathering
data about non-visual landmarks near bus stops. Hara et
al. [8] improve on this approach by performing crowdsourc­
ing on street-level imagery, without the need to explore an
area of interest in person. Guy and Truong [7] propose an
app to gather information on the structure and position of
nearby crossings through crowdsourcing of street-level im­
ages and to assist users with visual impairments in crossing
streets.

Computer vision techniques use satellite and street-level
images to assist persons with visual impairments. Hara et al.
[10] propose the detection of inaccessible sidewalks in Google
Street View images. Murali and Coughlan [15] match 360◦

panoramas captured by smartphone to satellite images of
the surroundings for estimating the user’s position in the
intersection more precisely than with GPS.

Hybrid approaches using automated computer vision tech­
niques for menial work and human “Turkers” for more com­
plex tasks have also been proposed. Hara et al. [9] extend
their previous work to combine crowdsourcing and computer
vision detection of street accessibility problems, such as ob­
stacles or damaged roads.

To the best of our knowledge, our technique is the first
to use satellite and street-level imagery for automated de­
tection of zebra crossings. The detection can be extended
with crowdsourcing for a final validation step, for adding
missed crosswalks and for gathering other information on
the surroundings of the detected crossings that can be of
use to visually impaired pedestrians in finding and aligning
to the crossings. Detected crosswalks can be added to a
crowdsourced GIS and used by travelers with visual impair­
ments during navigation planning. Solutions that detect
crosswalks using the smartphone video camera [1, 4] can
benefit from this information to assist the user in finding
crossings at long distances that cannot be captured by the
camera.

3. ZEBRA CROSSING IDENTIFICATION
Multiple types of road surface markings are used across

the world to define pedestrian crossings. In the United
States, at least two different types of pedestrian crossing
markings are available1 . The transverse marking consists of
two white lines, perpendicular to the road direction, with
width between 6in (15cm) and 24in (60cm). The separa­
tion between the two lines is at least 6ft (180cm). Zebra
crossings, known as “continental crossings” in USA, can be
visually detected at larger distances than other crosswalk
markings in the same illumination [5]. Thus, zebra crossings
are common when the crossing visibility is paramount for the
pedestrians’ safety, for example near schools and hospitals.
As such, they also inform drivers to pay more attention to
the crosswalk, which is desirable for pedestrians with visual
impairments who cannot rely on sight for noticing incoming
vehicles.

While in this contribution we focus on U.S. zebra cross­
ings, the parameters of the detection can be tuned for other
types of zebra crossings with different geometric character­
istics. Other pedestrian crossing types, such as transverse
markings, can be detected with the same approach but they
require significant changes to the detection algorithm and
therefore they will be considered as future work.

http:6http://www.bemyeyes.org
http:5http://vizwiz.org
http:4http://blindsquare.com
http:2http://wheelmap.org

Satellite Images
Processing

Street view
images processing

Satellite images

Candidate
crossings

Street view images

Detected
crossings

Geographical
area

Figure 1: Technique overview

A zebra crossing is a set of parallel, uniformly painted,
white stripes on a dark background. The gaps separating the
white stripes are “dark stripes”. Each stripe is a rectangle
or, in case of diagonal crossings, a parallelogram. United
States regulation dictates that zebra crossings be at least 6ft
(180cm) wide, with white stripes 6in (15cm) to 24in (60cm)
thick. The thickness of the dark stripes is not regulated.

3.1 Technique Overview
The proposed cascade classifier is composed of two main

steps, as shown in Figure 1. The overall idea is to extract
candidate zebra crossings from satellite images and then to
validate them through street view images. The input of the
procedure is an area A in which to detect the zebra crossings.

In the first step (see Section 3.2), the satellite images
covering the input area A are downloaded from an online
GIS and candidate zebra crossings are extracted from them
through a computer vision technique. While the technique
proposed in our solution can be applied to images from dif­
ferent providers, the system we developed gathers images
from Google Maps.

The second step (see Section 3.3) acquires, for each candi­
date zebra crossing, nearby street view panoramas (if avail­
able) that might contain the zebra crossing. Zebra crossings
are detected in street view panoramas and matched with the
candidate crossings extracted from satellite images. In case
of a match, the validated zebra crossing is returned and the
result can be cached for future use.

It is also possible to extract candidate zebra crossings
from all street view panoramas in the input area A and
then validate them with satellite images. However, this
approach would require downloading all panoramas in A,
which is time consuming given the Google download lim­
its7 and the large amount of data. In our experiments,
for an input area of 1.6km2, starting first with satellite im­
ages required downloading ≈ 23MB, followed by 16MB for
the street view panoramas validation. Conversely, starting
from street view panoramas would have required download­
ing 637MB, followed by less than 1MB for the subsequent
validation through satellite images. Overall, the cost (in
terms of data transfer) of starting with satellite images is
only about 6% of the reverse procedure that begins with
street view images.

7https://developers.google.com/maps/licensing

3.2 Satellite Image Processing
Algorithm 1 describes the procedure to acquire the satel­

lite images8 and to process them. To acquire satellite im­
ages, we rely on the Google Static Maps API 9 that allows
satellite images to be downloaded through HTTP calls. Each
call specifies the GPS coordinates of the image center, the
zoom factor and the image resolution. The maximum image
resolution is constrained so, for large input areas, several
HTTP requests must be sent.

We reconstruct the area A by downloading the images
whose union yields A. Indeed, given a zoom factor and the
maximum image resolution, it is straightforward to compute
the size (in meters) of the region covered by each image.
Thus, A can be partitioned in sub-regions with this max­
imum size (Line 2). Figure 2(a) shows an example of the
partitioning step.

A
640px

38m
=

640px

38m
=

1 2 3

4 5

6 7 8

current
image

d
d

(a) Area A partitioned (b) Extended image

Figure 2: Area partitioning and extended image

Since there is a maximum daily number of requests that
can be submitted to Google Maps, we only download images
that do not contain roads. This can be achieved through
the Google Maps Javascript API 10 . These APIs expose a
method to compute, given an input coordinates, the closest
position on a road. Before downloading an image centered
at a point p, we compute the distance from p to the closest

8Satellite and street view imagery courtesy of Google c©
9https://developers.google.com/maps/documentation/
staticmaps/

10https://developers.google.com/maps/documentation/
javascript/

Algorithm 1 Satellite images acquisition and processing

Input: Rectangular geographical area A.

Output: a set Z of zebra crossings, each one represented

by its position and direction.

Method:
1: Z ← ∅ {algorithm result}
2: partition A in a set R of sub-regions
3: for all (sub-region r ∈ R) do
4: if (r does not contain a road) then continue
5: download satellite image i of area r
6: generate extended image i'

7: L ← detect line segments in i'

8: S ← group line segments in L in candidate crossings
9: for all (candidate crossing s ∈ S) do
10: if (s is not a valid crossing) then continue
11: z ← position and direction of zebra crossing s
12: merge and add z to Z
13: end for
14: end for
15: return Z

road. If this distance is larger than half the diagonal length
of the image, we can infer that the image does not include
any road, and hence we can avoid downloading it (Line 4).
Note that this approach has a secondary advantage: it limits
the number of false positives, i.e., patterns that are similar
to zebra crossings that are erroneously recognized as such.

Dividing A in subregions implies that a zebra crossing
spanning multiple adjacent images may be recognized in
some of them or may not be recognized in any. Consider
the example in Figure 3, where the white dashed line is the
boundary between two adjacent images. To tackle this prob­
lem, we construct an extended image by merging a down­
loaded image with the borders of the 8 surrounding images,
as shown in Figure 2(b) (see Algorithm 1, Line 6). The
width of each border is chosen to guarantee the recognition
of a zebra crossing, even if it is on the border between ad­
jacent images. Still, this approach can result in a crossing
being recognized in more than one image. We show in the
following how to merge candidate zebra crossings that cor­
respond to the same crossing and appear in different images.

Figure 3: Zebra crossing on two adjacent images

The detection technique extracts the line segments cor­
responding to the long edges of stripes from the image (see
Figure 4(a)) using a customized version of the EDLines algo­
rithm [2] (Line 7). The line segments are grouped into sets
of stripes based on horizontal distance, vertical distance and
parallelism criteria (Line 8). The resulting candidate cross­

ings (see Figure 4(b)) are validated based on the stripes
number and color intensity and the candidate crossings that
are not validated are discarded (Line 10).

Our technique is adapted from the ZebraLocalizer algo­
rithm for zebra crossing recognition on smartphones [1]. Dif­
ferently from ZebraLocalizer, our approach does not require
reconstructing the ground plane since satellite images are
not subject to perspective distortion, being acquired from
above the ground plane.

(a) Line segments (b) Crossing

Figure 4: Satellite detection steps

If a set of stripes is not discarded, it is assumed to be a
zebra crossing and it is characterized by its direction and po­
sition. Its direction is easily derived as the angle of the line
perpendicular to the stripes, which should all share nearly
the same angle, due to the parallelism criterion (Line 8).
The zebra crossing’s position is represented as the quadri­
lateral bounding the detected set of stripes, as depicted in
Figure 4(b).

Finally, the detected zebra crossing is added to the set of
results Z. As mentioned above, the same zebra crossing may
be recognized in two or more different images. Hence, when
inserting z in Z (Line 12), we first check if Z already contains
a zebra crossing with approximately the same position and
direction as z. If a similar crossing is found, the two crossings
are merged.

3.3 Street View Image Processing
Algorithm 2 describes the procedure to validate a sin­

gle zebra crossing through the acquisition and processing
of street view panoramas. The procedure is iterated for all
zebra crossings detected during satellite image processing.
In Google Maps, street view panoramas are spherical images
(i.e., they span 360◦ horizontally and 180◦ vertically) posi­
tioned at discrete coordinates distributed non-uniformly in
space and they are structured in a graph that closely follows
the road graph. Through the Google Maps Javascript API
it is possible to request the panorama closest to a point in
space and to retrieve the coordinates of panoramas directly
linked to a given one.

For an input zebra crossing z the algorithm first identi­
fies the coordinates c0 of the panorama closest to it. The
panorama centered in c0 in some cases does not contain z
due to occlusion by the car used to take the pictures, or by
other objects and vehicles. Thus, our algorithm processes
c0 as well as other nearby panoramas until the crossing has
been validated or all nearby panoramas have been processed.
The set of coordinates of panoramas still to be processed is
represented by C, initially containing only c0.

Algorithm 2 Street view images acquisition and processing

Input: candidate zebra crossing z ∈ Z represented by its

position and direction.

Output: a validated zebra crossing z ' represented by its

position and direction or null if not validated.

Method:

1: c0 ← get the coordinates of panorama closest to z
2: C ← {c0} {Set of panoramas to be processed}
3: while (C = ∅) do
4: c ← pop element from C
5: α ← direction angle from c to z
6: i ← image at coordinates c with direction alpha
7: L ← detect line segments in i

L ' 8: ← rectify line segments in L
9: S ← group line segments in L ' in candidate crossings
10:	 for all (s ∈ S) do
11: if (s is a valid crossing) then
12: z ' ← position and direction of zebra crossing s
13: if (z matches z ') then return z '

14: end if
15:	 end for
16:	 push in C coordinates of panoramas directly linked to

c and close to z
17: end while
18: return null

For each panorama centered in coordinates c ∈ C, the
algorithm identifies a small portion of the spherical image
that actually needs to be acquired. On the vertical axis, we
use a fixed pitch (−30◦) and vertical field of view (60◦) in
order to exclude the portion of the panorama occluded by
the car taking the picture and the portion of the panorama
above the horizon, which clearly does not contain crossings.
For capturing the correct horizontal portion of the panorama
we first compute the direction angle α that, starting from
coordinates c, points towards the center of z (see Line 5).
This angle represents the center, along the horizontal axis, of
the acquired image. A horizontal field of view of 60◦, given
the pitch, vertical field of view, and a camera height of 2.5m,
guarantees to include, at minimum distance, a span of 3.5m.
Considering the United States regulation, this is sufficient
to include from 5 to 23 stripes of a crossing, sufficient for a
correct detection. See Figures 5(a) and 5(b).

horizon

pitch

vertical
field

of view

camera direction
horizontal

field of
view

camera

direction

direction
angle

North

(a) Vertical field of view (b) Horizontal field of view

Figure 5: Horizontal and vertical field of view

The usage of fixed parameters simplifies a number of for­
mulae, including those for image rectification (see below).
As future work these parameters could be derived from the
relative position of c and z. For example smaller pitch values
can be used if z is closer to c.

The image i containing a portion of the panorama at coor­
dinates c and with direction α is acquired and then processed
with an adapted version of ZebraLocalizer [1] algorithm to
reconstruct the coordinates of line segments on the ground
plane (Lines 7 to 11). The difference with ZebraLocalizer is
that, since camera height and pitch are fixed, we can pre­
compute the homography to reconstruct the ground plane
in all acquired images. Figures 6(b) and 6(c) show an exam­
ple of ground plane reconstruction. Rectified line segments
are then grouped and validated based on the same criteria
described in Section 3.2.

If the set S of identified stripes represents a valid crossing
z ' , its position and orientation are compared with those of
z. Clearly, even if z ' actually represents the same crossing
as z, the bounding quadrilaterals of the two crossings rarely
have exactly the same coordinates, due to a number of ap­
proximations introduced in the computation, including GPS
imprecision and the fact that not all stripes of a zebra cross­
ing are always identified. For example, the same crossing
detected in a satellite image (Figure 6(a)) and detected in a
street view panorama (Figure 6(b)) has different GPS coor­
dinates, as shown in Figure 6(d). Similarly, the orientation
of z and z ' can differ.

Thus, there is a tolerance in the comparison of z with z '

and a system parameter defines the maximum distance such
that z and z ' are considered the same crossing. Analogously,
a system parameter defines the maximum angular distance
between the orientation of z and z ' . If z and z ' represent
the same crossing, then z ' is returned as a valid crossing.

If the set of stripes S does not represent a valid crossing or
if z ' does not represent the same crossing as z, the algorithm
populates C with the coordinates of other panoramas close
to c (if any). The algorithm adds to C the coordinates of
panoramas directly linked to c that have not already been
processed during the validation of z and that are close to z
(the maximum distance is bounded by a system parameter).
Eventually either z is validated or all nearby street view
panoramas are processed (i.e.: C = ∅); in this case null is
returned.

4. EXPERIMENTAL EVALUATION
This section reports the results of the experiments con­

ducted to evaluate our technique over a dense urban region
of San Francisco. These results are quantified in terms of
precision (the fraction of detected zebra crossings that are
true detections) and recall (the fraction of true zebra cross­
ings that are correctly detected). We demonstrate that our
cascade classifier is powerful enough to identify nearly all
zebra crossings, with only a small number of false positive
candidates that need to be eliminated in a subsequent stage
of crowdsourcing-based image inspection.

4.1	 Experimental setting
To evaluate the proposed technique we considered a rect­

angular urban area A in San Francisco, with sides of length
1529m and 1025m and an area of 1.6km2 . The area coor­
dinates11, along with detected crossing portions, true pos­
itives (green pins) and false positives (red pins) have been
published12 .

11http://webmind.di.unimi.it/satzebra/satzebra.kml
12http://webmind.di.unimi.it/satzebra

(a) Satellite detection (b) Street view detection (c) Reconstructed street view (d) imprecision in detection

Figure 6: Imprecision in GPS coordinates between satellite and street view detected crossings

A total of 141 zebra crossings and 152 transverse pedes­
trian crossings have been detected in the satellite and street
view images of the area by a human operator. In the follow­
ing, a zebra crossing is considered to be detected correctly
if at least 4 consecutive stripes of the crossing have been
detected correctly.

Concerning satellite images, with the maximum zoom level
available in Google maps for the considered area, each im­
age with maximum resolution of 640 × 640 pixels covers
38m × 38m. Thus, a total of 1149 satellite images are re­
quired to cover A. Since the size of each image is approx­
imately 46KB, the size of all images covering A is 52MB.
The total number of street view panoramas available in A
is 1425. As we show in the following, we acquired only a
small portion of these panoramas, each having a resolution
of 640 × 640 pixels and, on average, a size of 51KB.

The tests were conducted on a laptop computer with Intel
core i7 4500u 1.8GHz CPU and 8GB RAM.

4.2 Satellite image processing evaluation
As reported in Algorithm 1, only images containing streets

are actually considered. With this approach a total of 791
images actually need to be acquired with a total size of
35MB. This means that, in A, our technique avoids down­
loading about one third of the images that would be other­
wise required. In areas where the density of the road network
is lower (like in suburban or rural areas), we can expect that
an even higher percentage of images can be omitted.

The recognition process described in Algorithm 1 (Lines 7­
8) detects a total of 773 zebra crossing portions. Often a
single zebra crossing is detected as two or more zebra cross­
ing portions. For example this can happen when a vehicle
is visible in the middle of the crossing, causing a partial oc­
clusion. By merging these crossing portions (Algorithm 1,
Line 12) our technique identifies 199 candidate crossings.

Out of 199 detected candidate crossings, 137 correspond
to actual zebra crossings. Since the number of actual zebra
crossings in A is 141, recall is 0.97. A few zebra crossings
are not detected due to discolored or faded paint (see Fig­
ure 7(a)) while others are almost totally covered by trees,
shadows or vehicles (see Figure 7(b)). The process also
yields 62 false positives, hence the precision is 0.69. In many
cases, false positives correspond to rooftops (Figure 7(c)) or
other parts of buildings (Figure 7(d)).

These recall and precision scores refer to parameter set­
tings tuned for the highest possible recall so that almost no
crosswalks are missed by the algorithm. Naturally, perfect

recall is difficult to reach and comes at the expense of a
greater number of false positives, i.e., a smaller precision.
However, considering that a final crowdsourcing validation
step is possible, it is much easier for crowdworkers to rule
out false positives than it is to find false negatives, which
requires scrutinizing the entire area of interest to identify
crosswalks that have not been detected by the algorithm.
Parameters can be tuned for different trade-off levels be­
tween precision and recall. The Pareto frontier shown in
Figure 8 lists the best precision and recall trade-offs ob­
tained during the tuning of the parameters.

Regarding computation time, we consider the CPU-bound
process only and we ignore the time to acquire images, which
mainly depends on the quality of the network connection.
The CPU-bound computation required for the extraction of
candidate crossings in a single image is 180ms. Running
the algorithm sequentially on the 791 images acquired for A
requires a total of 142s. However, note that the process can
be easily parallelized and thus it would be straightforward
to further reduce computation time.

4.3 Street view image processing evaluation
For each candidate crossing in Z (the set of candidate

crossings computed with satellite images), there are on av­
erage 5.7 nearby street view panoramas. By considering true
positives only (i.e., candidate crossings that represent actual
crossings), the average number of nearby street view panora­
mas increases to 7.3 and only 2 candidate crossings that
represent actual crossings have no street view panoramas
in their vicinity (less than 1.5%). Conversely, false positive
candidate crossings have a much lower number of nearby
street view panoramas (on average 2.6). Indeed, 19 false
positives (30% of the total) do not have any nearby street
view panorama and 46 false positives have 3 or fewer sur­
rounding panoramas (74%). This is caused by the fact that,
as observed previously, many false positives are located on
rooftops or other areas that are not in the immediate vicinity
of streets.

As reported in Algorithm 2, our solution acquires nearby
panoramas iteratively, until the candidate crossing is val­
idated. On average, considering true positives, 1.8 street
view panoramas are acquired for each candidate crossing.
In 76% of the cases a true positive crossing is validated with
at most two panoramas, and up to 56% are validated by pro­
cessing a single street view panorama (see Figure 9). Con­
versely, filtering out false positives requires processing all
available nearby street view panoramas. Overall, the tech­

(a) FN - discoloration (b) FN - hidden by trees (c) FP - roof pattern (d) FP - stairs pattern

Figure 7: False negatives (FN) and false positives (FP) in satellite detection and street view validation

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.7 0.75 0.8 0.85 0.9 0.95

P
re

ci
si

on

Recall

Whole recognition
Satellite detection

Figure 8: Pareto frontier of the detection procedure

nique requires acquiring and processing a total of 406 street
view panoramas for A (≈ 2 for each candidate crossing).
The total size of these images is 20.3MB.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e

di
st

ri
bu

ti
on

Panoramas required for validation (actual crossings only)

Figure 9: Used panoramas cumulative distribution

The street view-based validation (tuned for the best recall
score) filters out 58 out of 62 false positives identified in
the previous step, yielding a precision score of 0.97. The
few false positives still present are caused by patterns very
similar to zebra crossings, like the stairs in Figure 7(d). Of
137 true positives in Z, 134 are validated, resulting in a recall
score of 0.98. Overall, the recall score of the whole procedure
(including both satellite and street view detection) is 0.95.

As with the satellite detection, different parameter set­
tings yield different precision and recall scores during the
validation. Figure 8 shows the settings that yield the best
precision and recall trade-offs during the validation.

Regarding computation time, each street view image can
be processed in 46ms and hence the total computation time
is 18.5s. Overall, considering the two detection steps (from

satellite images and street view panoramas), the total CPU­
bound computation time to process A is 161s.

5. DISCUSSION AND FUTURE WORK
While the accuracy of the detection is high, since no com­

puter vision algorithm is perfectly accurate, we envision a
subsequent stage of processing based on online crowdsourc­
ing (as in [10]) to rule out false positives and identify false
negatives. A web service will be offered to allow users to
submit crossings that have been missed (possibly also inte­
grated in a future navigation software). For pruning false
positives, instead, we intend to leverage crowdsourcing ser­
vices such as Amazon Mechanical Turk13 and propose that
zebra crossings detected by our computer vision algorithm
be referred to crowdworkers, who will decide whether zebra
crossings are indeed present in the images. The crossings
database could also be augmented with auxiliary informa­
tion such as the presence and location of important features
such as walk lights (which could be monitored in real time
by the app) and walk push buttons. These could be also
added by users or automatically by a visual detection app.

The resulting crosswalk database could be accessed by vi­
sually impaired pedestrians through the use of a GPS nav­
igation smartphone app. The app could identify the user’s
current coordinates and look up information about nearby
zebras, such as their number, placement and orientation.
Existing apps such as Intersection Explorer and Nearby Ex­
plorer (for Android) and Sendero GPS LookAround and In­
tersection (for iPhone) could be modified to incorporate in­
formation from the crosswalk database. Computer vision­
based detection apps on smartphones, such as Zebralocal­
izer [1] and Crosswatch [4], could additionally use the database
to help users to approach and align properly to crosswalks
even when they are not yet detected by the app.

Another important way in which the crosswalk database
could be used by blind and visually impaired pedestrians
is for help with offline route planning, which could be con­
ducted by a traveler on his/her smartphone or computer
from home, work or other indoor location before embark­
ing on a trip. For example, a route-planning algorithm may
weigh several criteria in determining an optimal route, in­
cluding the number of non-zebra crossings encountered on
the route (which are less desirable to traverse than zebra
crossings) as well as standard criteria such as total distance
traversed. The crosswalk database could also be augmented
with additional information, including temporary hazards or
barriers due to road construction, etc.

13https://www.mturk.com

http:13https://www.mturk.com

6. CONCLUSIONS
Our contribution presents a technique that uses computer

vision algorithms to detect and localize zebra crosswalks
with high accuracy in existing spatial images databases such
as Google satellite and Street View. To the best of our
knowledge, these features are not already marked in exist­
ing GIS services and we argue that knowing the position of
existing crosswalks could be useful to travelers with visual
impairments for planning the navigation, finding pedestrian
crosswalks and crossing roads.

For the detection we propose a cascade classifier derived
from the algorithm we previously proposed for zebra cross­
ing recognition on smartphones [1]. The proposed solution
identifies potential crossings in street areas in satellite im­
ages and validates potential crossings with nearby Street
View panoramic images.

We evaluated the proposed solution on a 1.6km2 area in
San Francisco in which the pedestrian crossings were previ­
ously manually labeled. The dataset contained of 791 satel­
lite images limited to street areas and 406 portions of Street
View images referring to potential crossings. The technique
achieved a precision of 0.97 and a recall of 0.95 with a com­
putation time of 161s for the whole area.

The proposed approach is also complementary to exist­
ing solutions [1, 4] that leverage computer vision techniques
for detecting pedestrian crossings using video cameras on
mobile devices. A technique leveraging both data sources
would be a helpful tool for assisting people with visual im­
pairments to align to and safely and independently to cross
roads.

7. ACKNOWLEDGMENTS
James M. Coughlan acknowledges support by the National

Institutes of Health from grant No. 2 R01EY018345-06 and
by the Administration for Community Living’s National In­
stitute on Disability, Independent Living and Rehabilitation
Research, grant No. 90RE5008-01-00.

8. REFERENCES
[1] D. Ahmetovic, C. Bernareggi, A. Gerino, and

S. Mascetti. Zebrarecognizer: Efficient and precise
localization of pedestrian crossings. In Int. Conf. on
Pattern Recognition. IEEE, 2014.

[2] C. Akinlar and C. Topal. Edlines: A real-time line

segment detector with a false detection control.

Pattern Recognition Letters, 2011.

[3] J. Barlow, B. Bentzen, D. Sauerburger, and L. Franck.
Teaching travel at complex intersections. Foundations
of Orientation and Mobility, 2010.

[4] J. Coughlan and H. Shen. Crosswatch:	 a system for

providing guidance to visually impaired travelers at

traffic intersection. Jour. of Assistive Technologies,

2013.

[5] K. Fitzpatrick, S. T. Chrysler, V. Iragavarapu, and
E. S. Park. Crosswalk marking field visibility study.
Technical report, 2010.

[6] M. F. Goodchild. Citizens as sensors: the world of

volunteered geography. GeoJournal, 2007.

[7] R. Guy and K. Truong. Crossingguard:	 exploring
information content in navigation aids for visually
impaired pedestrians. In Conf. on Human Factors in
Computing Systems. ACM, 2012.

[8] K. Hara, S. Azenkot, M. Campbell, C. L. Bennett,
V. Le, S. Pannella, R. Moore, K. Minckler, R. H. Ng,
and J. E. Froehlich. Improving public transit
accessibility for blind riders by crowdsourcing bus stop
landmark locations with google street view. In Int.
Conf. on Computers and Accessibility. ACM, 2013.

[9] K. Hara, V. Le, and J. Froehlich. Combining
crowdsourcing and google street view to identify
street-level accessibility problems. In Conf. on Human
Factors in Computing Systems. ACM, 2013.

[10] K. Hara, V. Le, J. Sun, D. Jacobs, and J. Froehlich.
Exploring early solutions for automatically identifying
inaccessible sidewalks in the physical world using
google street view. HCI Consortium, 2013.

[11] H. H. Hochmair, D. Zielstra, and P. Neis. Assessing
the completeness of bicycle trails and designated lane
features in openstreetmap for the united states and
europe. In Transportation Research Board Annual
Meeting, 2013.

[12] M. Kubásek, J. Hřeb́ıček, et al. Crowdsource approach
for mapping of illegal dumps in the czech republic. Int.
Jour. of Spatial Data Infrastructures Research, 2013.

[13] J. Leitloff, S. Hinz, and U. Stilla. Vehicle detection in
very high resolution satellite images of city areas.
Trans. on Geoscience and Remote Sensing, 2010.

[14] M. Mokhtarzade and M. V. Zoej. Road detection from
high-resolution satellite images using artificial neural
networks. Int. jour. of applied earth observation and
geoinformation, 2007.

[15] V. Murali and J. M. Coughlan. Smartphone-based
crosswalk detection and localization for visually
impaired pedestrians. In Int. Conf. on Multimedia and
Expo (workshop). IEEE, 2013.

[16] S. Prasain. Stopfinder: improving the experience of
blind public transit riders with crowdsourcing. In Int.
Conf. on Computers and Accessibility. ACM, 2011.

[17] M. T. Rice, A. O. Aburizaiza, R. D. Jacobson, B. M.
Shore, and F. I. Paez. Supporting accessibility for
blind and vision-impaired people with a localized
gazetteer and open source geotechnology. Transactions
in GIS, 2012.

[18] T. Senlet and A. Elgammal. Segmentation of occluded
sidewalks in satellite images. In Int. Conf. on Pattern
Recognition. IEEE, 2012.

[19] B. Sirmacek and C. Unsalan. Urban-area and building
detection using sift keypoints and graph theory. Trans.
on Geoscience and Remote Sensing, 2009.

[20] W. R. Wiener, R. L. Welsh, and B. B. Blasch.
Foundations of orientation and mobility. American
Foundation for the Blind, 2010.

[21] J. Xiao and L. Quan. Multiple view semantic
segmentation for street view images. In Int. Conf. on
Computer Vision. IEEE, 2009.

[22] A. R. Zamir and M. Shah. Accurate image localization
based on google maps street view. In Oroc. of.
European Conf. on Computer Vision. Springer, 2010.

