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Abstract

Independent mobility involves a number of challenges for people with visual
impairment or blindness. In particular, in many countries the majority of
tra�c lights are still not equipped with acoustic signals. Recognizing tra�c
lights through the analysis of images acquired by a mobile device camera is a
viable solution already experimented in scientific literature. However, there
is a major issue: the recognition techniques should be robust under di↵erent
illumination conditions.

This contribution addresses the above problem with an e↵ective solution:
besides image processing and recognition, it proposes a robust setup for image
capture that makes it possible to acquire clearly visible tra�c light images
regardless of daylight variability due to time and weather. The proposed
recognition technique that adopts this approach is reliable (full precision and
high recall), robust (works in di↵erent illumination conditions) and e�cient
(it can run several times a second on commercial smartphones). The exper-
imental evaluation conducted with visual impaired subjects shows that the
technique is also practical in supporting road crossing.
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1. Introduction1

Most mobile devices are accessible to people with visual impairment or2

blindness (VIB)1. This makes it possible to use these devices as platforms3

for the development of assistive technologies. Indeed, applications specif-4

ically designed for people with VIB are already available in online stores.5

For example, iMove supports independent mobility in urban environment by6

“reading aloud” the current address and nearby points of interest2. Other so-7

lutions proposed in the scientific literature adopt computer vision techniques8

to extract contextual information from the images acquired through the de-9

vice camera. In particular, this paper focuses on the problem of recognizing10

tra�c lights with the aim of supporting a user with VIB in safely crossing a11

road.12

A number of solutions have been proposed in the scientific literature to13

recognize tra�c lights. Existing solutions have a common problem: they use14

images acquired through the device camera with automatic exposure. With15

this approach, in conditions of low ambient light (e.g., at night) tra�c lights16

result overexposed (see Figure 1) while in conditions of high ambient light17

(e.g., direct sunlight) tra�c lights are underexposed (see Figure 2).18

This paper presents TL-recognizer , a tra�c light recognition system that19

solves the above problem with a robust image acquisition method, designed to20

enhance the subsequent recognition process. Experimental results show that21

TL-recognizer is reliable (full precision and high recall) and robust (works in22

di↵erent illumination conditions). TL-recognizer has also been optimized for23

e�ciency, as it can run several times a second on commercial smartphones.24

The evaluation conducted on subjects with VIB confirms that TL-recognizer25

is a practical solution.26

This paper is organized as follows: Section 2 discusses the related work27

and defines the objectives of this contribution. The basic acquisition and28

recognition technique is presented in Section 3, while improvements are de-29

scribed in Section 4. Section 5 reports the results of the extensive experi-30

mental evaluation and finally Section 6 concludes the paper.31

1In case the reader is unfamiliar with accessibility tools for people with VIB, a short
introduction video is available at http://goo.gl/mEI6Uz.

2At the time of writing, iMove is available for free download from AppStore: https:

//itunes.apple.com/en/app/imove/id593874954?mt=8.
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Figure 1: Pedestrian tra�c
light is overexposed.

Figure 2: Pedestrian tra�c
light is underexposed.

2. Detecting tra�c lights for people with VIB32

Independent mobility is a challenge for people with sight impairments,33

in particular for what concerns crossing a road at a tra�c light. A solution34

to this problem consists in the use of acoustic tra�c lights. There are many35

di↵erent models of acoustic tra�c lights. For example, in Italy, there are36

acoustic tra�c lights that produce sound on demand by pushing a button37

placed on the pole. The sound signals to the person with VIB when the light38

is green. In Germany, there are models that always produce a sound when39

the light is green (no button has to be pushed) and they adapt the intensity40

of the sound according to the background noise.41

Nonetheless, as reported by many associations for blind and visually im-42

paired persons, in most industrial countries (e.g., Italy, Austria, France, Ger-43

many, etc.), acoustic tra�c lights are not ubiquitous; they are present in some44

urban areas but may be absent in small towns. Furthermore, acoustic tra�c45

lights are not always working properly because damages often take a long46

time to be reported and fixed. The situation can be even worse in developing47

countries.48

2.1. Related work49

One of the first contributions on tra�c light recognition was presented50

by Kim et al. [1]. This solution is aimed at assisting drivers with color de-51

ficiency. Images are acquired through a digital video camera and processed52
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by a notebook. The main limitation of this solution is that it works cor-53

rectly only when there is a uniform background (e.g., the sky). Consequently54

this solution cannot be applied to the purpose of detecting pedestrian tra�c55

lights, because they are located in urban environments where the background56

contains, for example, shop lights and trees.57

Several other solutions proposed in the literature are specifically designed58

for smart vehicles [2, 3, 4, 5, 6]. These techniques cannot be directly used to59

guide people with VIB because they are specifically optimized for circular or60

elliptical lights, while pedestrian tra�c lights have di↵erent shapes.61

Di↵erently, other solutions, while designed for smart vehicles, are not62

specialized for circular or elliptical tra�c lights and hence can be adapted63

to recognize pedestrian tra�c lights. The solution by Wang et al. [7] aims64

at recognizing tra�c lights in a complex urban environment. The proposed65

technique first computes color segmentation in the HSI color space, then66

identifies candidate regions and finally uses a template-matching function to67

validate a tra�c light. The solution by Cai et al. [8] is aimed at recognizing68

‘arrow-shaped’ tra�c lights. In this solution, the dark regions of the im-69

ages are singled out. Then, the regions that are either to small or too big70

are discarded. Subsequently, a color filter for green, red and yellow is ap-71

plied to the candidate regions. Eventually, the arrow is recognized through72

Gabor transform and 2D independent component analysis. The solution by73

Almagambetov et al. [9] discusses a technique aimed at guaranteeing recogni-74

tion of tra�c lights from large distances (this is clearly an important feature75

for smart vehicles) and tackles the problem of recognizing ‘arrow-shaped’76

tra�c lights through a template-matching technique. The solution proposed77

by Charette et Nashashibi [10] detects, with a template-matching technique,78

the optical unit, the signal head as well as the tra�c light pole.79

Other solutions have been specifically proposed to support detection of80

pedestrian tra�c lights with the aim of supporting users with VIB. Ivanchenko81

et al. [11] present a recognition algorithm for smartphones designed for tra�c82

lights in U.S.. The status of the tra�c light is represented by the white shape83

of a pedestrian together with a circular light that can become red, yellow or84

green. In the first step, the algorithm uses smartphone sensors to determine85

the position of the smartphone with respect to the horizon and it analyzes86

only the upper part of the image. Secondly, it detects the circular light and87

the shape of the pedestrian. This algorithm also searches for a pedestrian88

walk to validate the result.89

Roters et al. in [12] investigate an algorithm consisting in three stages:90
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identification, video analysis and time-based verification. In the identification91

stage, the algorithm recognizes the tra�c light in front of the pedestrian. The92

video analysis stage tracks the candidate tra�c light in di↵erent frames of93

the video. Finally, during the time-based verification stage, the results of the94

identification stage are double-checked with those of the video analysis. Our95

contribution focuses on the first stage only; the other two forms of reasoning96

are important in the final application, and in fact the proposed architecture97

implements them in the TL-logic module (see Section 2.3). This contribution98

improves the identification stage by proposing a technique that is rotation99

invariant and that also takes into account the shape of the pedestrian tra�c100

light.101

Most of the techniques mentioned above have a common problem: the102

images are processed after their acquisition with the aim of guaranteeing103

robust recognition under di↵erent lighting conditions. The problem has been104

explicitly highlighted by Diaz-Cabrera et al. [5] that proposes a method105

for smart vehicles for detecting and determining the distance of Italian sus-106

pended vehicle tra�c lights. The approach uses normalized RGB color space107

to obtain a consistent accuracy in di↵erent illumination conditions. However,108

experimental results are still unsatisfactory in bright days or at night.109

A follow-up publication by Diaz-Cabrera et al. [6] argues that it is im-110

possible to reconstruct information with high precision from overexposed or111

underexposed images like the ones in Figures 1 and 2. Thus, the authors112

propose dynamic exposure adjustment based on sky pixels segmentation and113

luminosity evaluation. The paper also proposes an enhanced fuzzy-based114

color clustering and improves the previous solution with a faster, parallelized115

detection and a higher accuracy detection and distance computation. In116

our approach we also propose a dynamic method for exposure adjustment117

based on external luminosity that makes it possible to acquire suitable im-118

ages in all illumination conditions at the desired distances. Di↵erently from119

Diaz-Cabrera et al. [6], our approach also uses shape matching to identify120

pedestrian tra�c lights. Also, due to the fact that the device is held by the121

user, we leverage accelerometers and gyroscopes to compute the device’s po-122

sition in space and correctly detect and measure the distances between the123

user and the pedestrian tra�c light.124

It is not possible to fairly compare the solution proposed in this contribu-125

tion with previous ones, based on quantitative experimental results. Indeed,126

many existing contributions only present qualitative evaluations and, among127

those presenting quantitative results, very few are based on a publicly avail-128
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able dataset of images. Also, the few public datasets contain images that had129

not been acquired with the proposed solution for dynamic exposure adjust-130

ment and, in most of the cases, they do not include accelerometer measure-131

ments for each frame. Hence, it is only possible to compare the experimental132

results presented in this contribution with other ones obtained with di↵erent133

datasets of images, which leads to possibly biased outcomes. Another im-134

portant di↵erence is that, in some existing solutions, precision and recall are135

computed on streams of images, rather than on single images, hence applying136

a sort of “high level reasoning” to aggregate results from di↵erent successive137

frames. Roters et al. [12] experimentally show that the analysis of video138

yields better results (in term of precision and recall) than the analysis of139

single frames. Still, the solution by Roters et al. has a precision of 1 and a140

recall of about 0.5, while our solution has a precision of 1 and a recall of 0.81141

(see Section 5). Conversely, the solution by Almagambetov et al. [9] has a142

higher detection rate (up to 100% for certain illumination conditions), but it143

incurs into false positives and precision is as low as 0.8, which is unacceptable144

for the application considered in this contribution.145

Finally, a set of papers address the problem of tra�c light detection with146

a solution based on machine learning ([13, 14]). A comparison between recog-147

nition of tra�c lights though analytic image processing and learning-based148

processing was proposed by De Charette and Nashashibi [15]. The authors149

conclude that analytic image processing guarantees better performances in150

terms of precision and recall. For this reason, our contribution focuses on151

this approach.152

2.2. User story description153

Many people with VIB learn (typically with the help of an Orientation154

and Mobility professional) the routes that they will be undertaking daily, for155

example to go to work, school or church [16]. It is less common that a person156

with VIB independently attempts trips to new locations. The recognition157

technique described in this contribution enables the development of a mobile158

application that supports people in both cases, as described in the following159

two user stories that have been designed with the support of a blind person,160

with a user-centered design approach.161

User story 1. A person with VIB that is moving along a known path162

keeps track of his/her approximate position and heading with respect to163

many points of reference that can be perceived through touch (e.g., with the164

white cane), hearing or possibly through any residual sight. Upon reaching165
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a road crossing with a tra�c light, the person takes his/her mobile device166

and runs the application that automatically starts acquiring images from the167

camera. Then, he/she points the camera towards the tra�c light. The person168

knows the direction (both horizontal and vertical), that he/she learned while169

practicing on the route. It should be observed that the camera field of view170

is generally larger than about ⇡/4 on both dimensions3, even if the person171

points with an error of about ⇡/8, the tra�c light will still be in the field of172

view.173

As soon as the application detects the tra�c light, it gives a feedback174

(e.g., a vibration) and reads the current color or provides an instruction (like175

“stop” or “go”) with a text-to-speech message or through a vibration pattern.176

To guarantee a safe crossing, if the application first detects a green light, it177

still instructs the person not to cross: the tra�c light needs first to turn red178

and then, when it turns green again, the user is instructed to cross. Note179

that this is the same approach used in many acoustic tra�c lights.180

User story 2. A person with VIB that is walking along an unknown181

route incurs into two additional problems. First, he/she might be unaware182

whether the road intersection has tra�c lights. Second, he/she might be183

unaware of where to point the device camera to frame the tra�c light. To184

support the user in solving these two problems, the application, by using185

the accelerometer, instructs the person on how to point the camera along186

the vertical direction. Indeed, since tra�c lights are above the horizon, the187

device should be held with an angle such that the lower border of the captured188

image is approximately on the horizon. This guarantees that the upper edge189

of the image is above a tra�c light, if any are present.190

To “find” the tra�c light along the horizontal direction, the person can191

rely on the fact that tra�c lights are oriented towards the direction where192

the pedestrian is coming from. So the person has an approximate knowledge193

of the angular range where he/she should point the camera. Then, starting194

from one edge of this range, the person can scan towards the other range195

while the application processes the images. By using the device gyroscopes196

it is possible to detect if the user is rotating too fast and, in this case, to197

inform him/her. This guarantees that a tra�c light is detected with high198

likelihood, if one is actually present.199

3The exact value depends on the specific device.
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TL-Logic TL-NavigatorTL-Recognizer

Figure 3: Structure of the main application modules.

2.3. System Modules200

This paper focuses on the TL-recognizer module that computes the posi-201

tion and color of a pedestrian tra�c light in a given image. For the detection202

of tra�c lights TL-recognizer relies on data sources available on o↵-the-shelf203

smartphones: video camera, accelerometer and gyroscope. The first captures204

image frames that can then be analyzed with computer vision techniques.205

Accelerometer and gyroscope, on the other hand, can be used to extract the206

orientation of the device with respect to the ground plane. As shown in the207

following, this information has an important role in the proposed technique.208

In addition to processing frames, an application that supports people with209

VIB in road crossing should implement at least two other functionalities,210

which are designed as other two modules: TL-logic and TL-Navigation (see211

Figure 3).212

The TL-logic module is in charge of combining di↵erent results of TL-213

recognizer and computing messages to guide the user. Example 1 shows a214

simple form of reasoning.215

Example 1. One run of TL-recognizer detects a red tra�c light in a certain216

position. TL-logic computes a ‘wait’ message to instruct the user not to217

cross. After the recognition, TL-logic uses accelerometer and gyroscope data218

to estimate how the device is being moved and hence where the tra�c light is219

expected to be in the next frame. Indeed, the following run of TL-recognizer220

identifies a green tra�c light in the expected position. Consequently TL-221

logic can conclude that the tra�c light has now turned green and therefore222

generates a ‘cross’ message for the user.223
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The TL-Navigation is in charge of conveying the messages to the user224

through audio, haptic (vibration) and graphical information. The main chal-225

lenge in using audio information is that it should not divert the user’s at-226

tention from the surrounding audio scenario, which is essential to acquire227

indispensable information (e.g., an approaching car, a person walking by,228

etc.). Indeed, as remarked by Ullman et al., blind people run into di�culty229

when guided by verbose speech messages [17]. In the field of pedestrian cross-230

ings, the problem of guiding people with VIB has been specifically addressed231

by Mascetti et at. [18].232

2.4. The target to detect233

This paper considers tra�c lights currently used in Italy, which adhere to234

European Standard 12368 [19]. This standard specifies a number of physical235

properties of the tra�c lights, including, for example, their size, luminous236

intensities and colors that have to be consistent in all European countries.237

Luminous intensities are specified in two classes, with a common mini-238

mum and two maxima according to the class. Values are di↵erent according239

to the color and are reported in Table 1.240

red yellow green
min 100cd 200cd 400cd
Max Class 1 400cd 800cd 1000cd
Max Class 2 1100cd 2000cd 2500cd

Table 1: Luminous intensities range in the reference axis according to European Standard
12368 [19].

Chromaticities are delimited in the CIE XYZ space according to the val-241

ues reported in Table 2.242

In Italy, as in many other countries, di↵erently shaped lights are used243

to transfer messages to di↵erent classes of road users. For example, the244

rounded light is used for drivers, while the “body-shaped” light is used for245

pedestrians. Two di↵erent shapes are used in Italy for pedestrians lights:246

one for green light, the other for yellow and red lights (see Figures 7, 8 and247

9). While the actual shape of the figure appearing through the lens can vary248

from country to country (in some cases even within the same country), the249

proposed solution can be easily adapted to most existing standards by simply250

re-tuning the detection parameters and by using di↵erent template images251
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chromaticity boundaries boundary

y = 0.290 red
red y = 0.980� x purple

y = 0.320 yellow

y = 0.387 red
yellow y = 0.980� x white

y = 0.727x+ 0.054 green

y = 0.726� 0.726x yellow
green x = 0.625y � 0.041 white

y = 0.400 blue

Table 2: Chromaticities range according to European Standard 12368 [19].

(see Section 3.5). Also, if the proposed technique is used in countries with252

very particular light conditions (e.g., a bright sunny day in the desert) it253

could be necessary to accordingly tune the acquisition parameters with the254

methodology presented in the following.255

Among other physical properties of the tra�c light, its position with256

respect to the observer is particularly relevant. Indeed, given the applica-257

tion, only tra�c lights with bounded distance from the observer should be258

detected. For example, considering the width of urban roads, in the exper-259

iments the minimum and maximum horizontal distances adopted are 2.5m260

and 20m, respectively. Analogously the signal head should not be too high or261

too low with respect to the observer. Hence the vertical distance is bounded.262

For example, in the experiments the minimum and maximum vertical dis-263

tances adopted are 0.5m and 4m, respectively. Finally, the user is interested264

only in the tra�c lights that ‘point’ towards him/her. Consider for exam-265

ple Figure 4: the direction of the red tra�c light (red circle) is roughly the266

same angle as the line passing through the tra�c light and the user (black267

circle). Hence, that tra�c light should be detected. Vice versa, the green268

tra�c light (green circle) is pointing away from the user and hence it should269

not be detected. The ‘maximum rotation distance’ is the parameter defining270

the angular distance between the direction of the tra�c light and the direc-271

tion from the tra�c light towards the user. In the experiments a ‘maximum272

rotation distance’ of 45� is adopted. In a typical crossroad like the one in273

Figure 4, this value prevents the identification of a diagonally opposite tra�c274
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User

road

Figure 4: Example of ‘maximum rotation angle’.

light that, generally, shows an opposite color with respect to the one shown275

by the tra�c light the user is interested in.276

Henceforth some of the terms defined in European Standard 12368 [19] are277

used. In particular, the signal head (see Figure 5) is the device composed by278

di↵erent optical units (see Figure 6), each one with its lens. For example, in279

Italy, there are three optical units in each signal head. The background screen280

is the opaque and dark board placed around the optical units to increase the281

contrast. Also, the term active optical unit (‘AOU’ in the following) refers282

to the optical unit that is lighted in a given instant (as in Figure 6). Finally,283

“optical unit color” is the color of an optical unit when it is active. Examples284

of di↵erent visual appearances of the AOU are shown in Figures 5 to 9.285

Figure 5:
Signal
head

Figure 6: (Active)
optical unit

Figure 7: Green
AOU

Figure 8:
Yellow AOU

Figure 9: Red
AOU
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Image
acquisition Candidates

extraction
Candidates

pruning
Validation

Horizon
computation

Input acquisition Image processing

Figure 10: Organization of the recognition process

3. Recognizing tra�c lights286

3.1. Technique overview287

The recognition process is organized in two main phases: ‘input-acquisition’288

and ‘image-processing’ (see Figure 10). Input-acquisition is composed of two289

main steps: ‘image acquisition’ and ‘horizon computation’. During image ac-290

quisition a frame is captured by the device camera using specifically designed291

exposure parameters. This is presented in Section 3.2. The horizon compu-292

tation step uses accelerometer and gyroscope data to compute the equation293

of the horizon line in the image reference system. The horizon computation294

is based on Property 1 (proofs of formal results are in Appendix A).295

Property 1. Let ⇢ and ✓ be the device pitch and roll angles respectively, C =
hC

x

, C
y

i is the center of the image and f is the focal distance of the camera
(in pixels). Then, the equation of the horizon line h inside the acquired image
is:

sin(✓)x�cos(✓)y�sin(✓)(C
x

+tan(⇢) sin(✓)f)+cos(✓)(C
y

+tan(⇢) cos(✓)f) = 0
(1)

The image-processing phase is aimed at identifying the AOUs that appear296

in the image. The overall computation is presented in Algorithm 1 and can297

be logically divided into three steps: extraction of candidate AOUs, pruning298

of candidate AOUs and validation of AOUs (see Sections 3.3, 3.4 and 3.5,299

respectively).300

The image-processing algorithm takes in input the results of the acqui-301

sition phase: an image i (encoded in the HSV color space) and the horizon302

line equation h. There are other system parameters that form the algorithm303

input: three range filters f
g

, f
y

and f
r

, one for each optical unit color; three304
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Algorithm 1: Image processing (non optimized version)

Input: image i; horizon line equation h; range filters f
g

, f
y

and f
r

;
template images t

g

, t
y

and t
r

; threshold value T 2 (0, 1).
Output: a set R of active optical units. Each element of R is a pair
ho, ci where o is the AOU contour and c the color.
Constants: g, y and r represent the three optical unit colors (i.e.,
green, yellow and red).
Method:

1: R ; {algorithm result}
2: for all (color c 2 {g, y, r}) do
3: {Extraction of candidate AOU}
4: i0  apply f

c

to i {i0 is a binary image}
5: O  extract the set of contours from i0

6: for all (contour o 2 O) do
7: {Pruning of candidate AOU}
8: o0  rotate o by the inverse of the inclination of h
9: if (o0 does not satisfy “distance” or “width” properties) then

10: continue {prune o}
11: end if
12: {Validation}
13: p image patch, extract from i, corresponding to the MBR of o0

14: p resize p to have the same size of t
c

15: ↵ is the result of normalized cross correlation between t
c

and p
16: if (↵ > T ) then add ho, ci to R
17: end for
18: end for

13



template images t
g

, t
y

and t
r

, each one representing the three lenses and,305

finally, a threshold value T 2 (0, 1) used in the validation step. The output306

of the algorithm is a set of identified AOUs, each one represented by its color307

and its contour in the input image.308

3.2. Image acquisition309

The exposure of the image to be acquired is a key point. Light conditions310

during day and night are extremely variable, while luminance coming from311

tra�c lights is pretty stable. Since smartphone camera automatic exposure312

balances the mean luminance of every point in the entire image, its use can313

result in underexposed or overexposed AOUs (see Figures 1 and 2). For314

this reason, the proposed solution disables the automatic exposure feature315

of the mobile device and sets a fixed exposition value (EV) chosen among316

a small group of EVs pre-computed to encompass the luminance variations.317

These variations are mainly due to tra�c light class (see Section 2.4), and318

acquisition noise due to distance, misalignment, veiling glare, pixel saturation319

etc.320

Before selecting candidate EV values, the intensity and chromaticity of321

light coming from a set of tra�c lights were empirically verified. Table 3322

reports the values measured for four of them, as an example of the high323

variability.324

Although the standard for tra�c light luminous intensity is clearly de-325

fined, variability in the real world (i.e., in the streets) can be very high, both326

in terms of illuminance and chromaticity. The reasons are many: class (see327

Section 2.4), technology of light bulbs, dirt on the lens, aging, etc.328

To identify the correct EV, a series of pictures were taken at di↵erent329

times of the day and distances, starting from the theoretical EV computed330

from the European Standard luminous intensity ([19]) on a ±5 stops brack-331

eting, with step 1. From this set of shots, a subset of EVs were selected to332

cover the major part of the variance of correctly exposed lenses, in four light333

conditions.334

The four light conditions are: very high light intensity (e.g., a sunny335

day at noon), high light intensity (e.g., a partially cloudy day at noon, or336

a clear day when the Sun is not high in the sky), mid light intensity (e.g.,337

a cloudy day, or a clear day at dawn or dusk), low light intensity (e.g.,338

night). Note that, for our purposes, light condition is highly influenced by339

the time of day and by weather conditions (e.g., sunny, cloudy, etc...), while340

other meteorological conditions (like rain) do not a↵ect light intensity. To341
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tra�c light number AOU color Lux x y
green 2671 0.0875 0.6075

1 yellow 1138 0.5839 0.4155
red 740 0.7068 0.293

green 491 0.2785 0.495
2 yellow 1199 0.5676 0.4471

red 723 0.6568 0.3425

green 754 0.2193 0.5025
3 yellow 1502 0.5755 0.4129

red 955 0.6854 0.3142

green 1941 0.0727 0.5091
4 yellow 2065 0.587 0.4121

red 1082 0.7048 0.2951

Table 3: Intensity and chromaticity of four sample tra�c lights.

automatically identify the light condition, the following approach is adopted:342

before starting recognition, a picture is taken with fixed camera parameters343

(ISO 100, aperture F8.0, shutter speed 1/125). Then, value M is computed344

as the mean, for each pixel, of the V channel. This value characterizes the345

light condition. Table 4 shows how light conditions are specified as well as346

the camera parameters that yield best shots in each of them. It may appear347

counterintuitive but at night time the exposition is shorter; this reduces the348

optical veiling glare on the edges of the body shaped lens.349

Light intensity M ISO Aperture Shutter speed
Very High 120 < M 100 F8.0 1/160
High 60 < M  120 100 F8.0 1/200
Mid 5 < M  60 100 F8.0 1/250
Low M  5 100 F8.0 1/500

Table 4: EV parameters.

Image acquisition with fixed EV was implemented on both Android 4.x350

and Android 5.x. With Android 4.x it is possible to set the values for ISO,351
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Figure 11: Details of four pictures taken in di↵erent illumination conditions.

shutter speed and aperture through the Camera.Parameters object4. It352

should be observed that, while the Camera.Parameters object is defined353

for all Android APIs up to level 21 (excluded), not all of its methods pro-354

duce e↵ects on all devices. Indeed, on most devices the methods to manually355

set ISO, shutter speed and aperture do not produce any e↵ect and do not356

disable auto exposure. To the best of our knowledge, the only device that357

fully supports these APIs is the ‘Samsung Galaxy Camera’, which was used358

to collect the images used in the experiments (see Section 5).359

Android 5.x o↵ers a totally renewed set of APIs to access the camera360

and its parameters. The package containing the classes is called Camera2361

5. These classes o↵er several new APIs to control camera parameters and,362

based on our experience, these APIs are actually supported by most devices,363

including Nexus 5, which was used for the experiments.364

A final comment on gamut spaces. The high variability in terms of both365

European standard ranges and actual measured chromaticities of the AOUs366

(see Table 3) turned out to be wider than the average image variance due to367

possible changes of gamut space in the acquisition device. Thus, varying the368

parameter settings (see Section 5) is su�cient to compensate this variance.369

Figure 11 shows details of four pictures, each one representing a green370

AOU in a di↵erent illumination condition. The pictures were taken with371

the camera parameters described above. From left to right, the four light372

intensities are: very high, high, mid, and low. These results are examples373

of the stable acquisition (see Figures 1 and 2 for a visual comparison with374

automatic exposure).375

4
http://developer.android.com/reference/android/hardware/Camera.

Parameters.html

5
https://developer.android.com/reference/android/hardware/camera2/

package-summary.html
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Figure 12: Extraction of candidates AOUs. (a) Portion of original image, (b) filter on H,
(c) filter on S, (d) filter on V, (e) conjunction of filter results, (f) extracted contours.

3.3. Extraction of candidate active optical units.376

After image acquisition, for each optical unit color c (i.e., green, yellow377

and red), TL-recognizer identifies a set of image portions, each one represent-378

ing a candidate AOU. To achieve this, the proposed technique first applies a379

range filter and then groups contiguous pixels. This approach relies on the380

fact that AOUs have high luminosity values and are surrounded by regions381

with low luminosity values (i.e., the optical unit background).382

The range filter is defined over the HSV image representation and is383

used to identify the pixels with high luminosity values (see Line 4 in Algo-384

rithm 1). A di↵erent filter is defined for each optical unit color c. The result385

of the application of the range filter is a binary image whose white pixels386

are segmented into blocks of contiguous pixels (see Line 5). This is obtained387

through the technique proposed by Suzuki and Abe [20]. The result is a list388

of contours, each one composed of a set of points.389

Example 2. Consider the portion of image shown in Figure 12a. Figure 12b390

shows the application of the range filter for the yellow optical unit color on391

the H channel. Figures 12c and 12d shows the same filter for the S and V392

channels, respectively. Details on the filter ranges are provided in Section 5.393

Figure 12e shows the logical conjunction of the previous three figures, i.e.,394

the result of the range filter. Finally, Figure 12f shows the contours extracted395

from the image.396

3.4. Pruning of candidate active optical units.397

After extracting the contours from the source image, the algorithm re-398

moves the contours whose geometrical properties are not compatible with399
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those of an AOU. This pruning phase helps prevent false positives and it400

also improves computational e�ciency, as it reduces the number of times401

the validation process needs to be run. Pruning is based on two properties:402

“distance” and “width”.403

The “distance” property is based on the idea that the optical units to be404

recognized should not be too far or too close from the user (see Section 2.4).405

To capture this intuition, each contour is assumed to be an AOU (whose size406

is known). Then, its distance along the horizontal and vertical axes from407

the device camera is computed. These distances are then compared with408

threshold values and the contour is discarded if the AOU is too close or too409

far away along any of the two axes. Property 2 shows how to compute the410

horizontal and vertical distances.411

Property 2. Let ⇢ be the device pitch angle, d1 and d2 the directed minimum
and maximum vertical distances between the contour and the center of the
image (in pixel), f the focal distance (in pixel), l

h

the height of the optical
unit lens (see Figure 13 for a graphical representation). The horizontal and
vertical distances (d

h

and d
v

, respectively) between the device and the optical
unit are:

d
h

=
l
h

· cos(arctan(d2/f) + ⇢) · cos(arctan(d1/f) + ⇢)

sin(arctan(d2/f)� arctan(d1/f))
(2)

d
v

= d
h

· tan(arctan(d1/f) + ⇢) (3)
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There are two aspects related to the “distance” property that are worth412

observing. First, the formulae are based on the contour height, which is413

computed after rotating the contour by the inverse of the horizon inclination.414

This makes the proposed technique ‘rotation invariant’ in the sense that it415

is not a↵ected by accidental rotation of the device. The reason for using the416

height as the reference length is that, by using the device accelerometer, it417

is possible to compute the device pitch (i.e., the inclination with respect to418

the ground) that is then used to compensate for projection distortion. The419

second aspect is that, in practice, “distance” property checks the vertical420

size of the contour and discards the contours that are too small or too big.421

Indeed, small contours correspond to potential AOUs that are too distant422

from the user, hence not relevant for the recognition. Analogous reasoning423

can be applied for contours that are very large.424

The “width” property is used to prune the contours whose width is not425

compatible with the width of an optical unit lens. Property 3 shows how426

to compute the width of the object represented by the contour. Note that427

distance d between the camera and the tra�c light is easily computed from428

d
h

and d
v

.429

Property 3. Let w
c

be the contour width, f the camera focal distance (in
pixel), ↵ the angular distance between the image plane and the plane of the
optical unit lens and d the distance between the camera and the optical unit.
The width of the object represented by the contour is:

w =
d · w

c

f · cos(↵) (4)

There is a major di↵erence with respect to the computation of the “dis-430

tance” property: the relative angle ↵ between the image plane and the plane431

of the optical unit lens (see Figure 14) is not known. Consequently it is432

not possible to compute the exact width of the contour, but it is possible433

to bind it in a range. The minimum value of the range represents the case434

in which ↵ is zero (i.e., the device camera is pointing directly towards the435

tra�c light), while the maximum value represents the situation in which ↵436

is equal to the ‘maximum rotation distance’ (see Section 2.4). If the width437

of the optical unit lens (which is known) is not contained in the range, the438

contour is pruned.439
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a b c d e

Figure 15: Validation of candidates AOUs. (a) Portion of original image, (b) Contour, (c)
Rotated Contour, (d) Image Patch (rotated), (e) Template image.

3.5. Validation of active optical units.440

Each contour that passes the pruning step has geometrical properties441

compatible with an AOU; still, it is not guaranteed that it actually represents442

an AOU. To validate a contour, the proposed solution extracts from the input443

image the image portion (called ‘patch’, in the following) corresponding to444

the contour minimum-bounding rectangle (MBR).445

Note that the contour is rotated (see Algorithm 1 Line 8). For this reason,446

in theory, it should be necessary to apply the same rotation to the original447

image before extracting the patch. Since it is computationally expensive to448

rotate the entire image, the patch is rotated on-the-fly when it is constructed.449

The patch is then resized to the same size as the template, which is a sys-450

tem parameter. Finally, the two figures (patch and template) are compared451

with the fast normalized cross-correlation technique [21], chosen as the tech-452

nique to evaluate the similarity between two images. The patch is considered453

to be an active optical unit if the result of the comparison is larger than a454

given threshold T (see Line 16 in Algorithm 1). The methodology to select455

the threshold is described in Section 5.456

Example 3. Figure 15a shows a portion of an original image. Figures 15b457

shows the contour, as extracted during the extraction step, while 15c shows458

the rotated contour computed during the pruning step. Figure 15d shows the459

extracted patch. Note that the extracted patch is smaller than the template460

shown in Figure 15e (in the figure they are shown with the same size, but the461

patch has a smaller resolution). For this reason the patch is first resized to462

have the same size as the template and then the two images are compared. In463

this example, fast normalized cross-correlation returns a value of 0.82 that,464
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as shown in Section 5 is larger than T , hence the contour is recognized as a465

green AOU.466

4. Algorithm improvements467

In addition to the core recognition procedure described in Section 3, the468

proposed technique implements a number of improvements aimed at increas-469

ing the reliability of the results and computational performances.470

4.1. Improving recognition of red and yellow AOUs471

As shown in Section 5, the boundaries of the range filters for the red and472

yellow colors overlap. As a consequence, it is relatively frequent that a red473

AOU is confused with a yellow one, and vice versa.474

To avoid this problem, the following optimization is introduced. The475

main loop starting at Line 2 (see Algorithm 1) is iterated for two colors only476

(instead of three): green and ‘yellowRed’, i.e., a single color representing477

both red and yellow AOUs. To distinguish between red and yellow AOUs,478

a procedure is run during the validation phase, after extracting the patch479

p (Line 13). This procedure counts, in the patch p, the number of pixels480

with a purely red hue (160  h  179) and those with a purely yellow hue481

(10  h  30)6. If the number of red pixels is larger than the number of482

yellow ones, the patch is then assumed to be red and is compared with the483

red template. Otherwise the patch is assumed to be yellow.484

As shown in Section 5, this approach helps reducing the number of cases485

in which yellow and red AOUs are confused.486

4.2. Improving computational performance487

As shown in Section 5, the computation time of the base recognition488

algorithm is about 1s on a modern smartphone (with maximum image res-489

olution). While a delay of about 1 second in the notification of the current490

tra�c light color could be tolerable, an additional problem arose during pre-491

liminary experiments: it is challenging, for people with VIB, to point the492

device camera towards the tra�c light. To find the correct position, users493

needs to rotate the device left and right while paying attention to the device494

feedback (audio or vibration). This requires a responsive system and a delay495

6Henceforth hue scale is reported in [0, 180).
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of 1 second is not tolerable as it does not allow the user to find the tra�c496

light position.497

To speed up the computation, two di↵erent techniques are adopted: multi-498

resolution processing and parallel computation. Multi-resolution is based on499

the idea that the validation step requires the processing of images at a high500

resolution, while extraction and pruning steps are reliable (in terms of pre-501

cision and recall) even when images are processed at a smaller resolution.502

Running these two steps with images at a smaller resolution significantly503

improves the performances. For this reason, a resized version of the acquired504

image is processed during the extraction and pruning steps. Then, during505

the validation step, the image patch p is extracted (see Line 13) from the506

acquired high-definition image. ‘Resize factor’ is the parameter that defines507

to what extent the original images is resized. Technically, the number of508

pixels on both sides of the original image is divided by ‘resize factor’. As509

shown in Section 5, this optimization drastically reduces the computation510

time. However, large values of the resize factor negatively a↵ect algorithm511

recall, so the value of the resize factor should be carefully tuned.512

Since modern smartphones have multi-core CPUs, a natural approach to513

improve the performance of computational intensive operations is to adopt514

parallel computation. In particular, two pools of threads are used: one aimed515

at parallelizing the extraction process (Algorithm 1, Line 2), the other aimed516

at parallelizing the contours’ processing (Algorithm 1, Line 6). The former517

pool has a number of threads equal to the number of colors, while the latter518

has a number of threads equal to the number of CPU cores.519

5. Parameters tuning and experimental evaluation520

Two main sets of experiments were conducted: one set, called ‘computational-521

based’ is aimed at tuning the system parameters and at quantitatively mea-522

suring the performances of TL-recognizer . The second set, called ‘human-523

based’ is aimed at qualitatively asserting the e↵ectiveness of the proposed524

technique.525

5.1. Experimental evaluation methodology and setting.526

In order to ease the development of TL-recognizer and to guarantee re-527

producibility of the computational-based experiments, the following method-528

ology was adopted: images of urban scenarios were recorded, each one with529
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its associated information representing device orientation7. Each image was530

manually annotated with the position and the color of AOUs (if any). Fi-531

nally, an Android app was implemented to read the stored images and to use532

them as input for TL-recognizer .533

Two datasets of images each were created. The exposition of all the534

collected images has been chosen according to the methodology described in535

Section 3.2. The ‘tuning’ dataset (501 images), was used for debugging and536

parameters tuning, while the ‘evaluation’ dataset (1, 252 images) was used537

for performance measurement. Both datasets are divided into four subsets,538

one for each of the illumination conditions defined in Section 3.2. Details539

are reported in Table 5. The two datasets of images are publicly available8.540

Note that some of the pictures (in particular with mid and low illumination541

conditions) were taken while it was raining and results are not a↵ected by542

this weather condition.543

Set Light intensity
Number of images with

no AOU green AOU red AOU yellow AOU

Tuning

Very High 62 21 22 22
High 62 21 21 19
Mid 62 21 21 22
Low 62 21 21 21

Evaluation

Very High 75 62 45 37
High 105 96 104 52
Mid 64 78 109 59
Low 120 51 118 77

Table 5: Composition of the two sets of images.

During the computer-based experiments, a number of parameters were544

measured, including: precision, recall, computation time and number of “R-545

Y errors”, i.e., the number of times a yellow AOU is confused with a red546

AOU or vice versa. Note that, from the point of view of a person with VIB547

that is about to cross a road, a yellow AOU has the same semantic as a548

7Henceforth, the term ‘image’ refers to the actual image with the associated device
orientation information.

8
http://webmind.di.unimi.it/CVIU-TrafficLightsDataset
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red AOU i.e., the person should not start crossing. For this reason, when549

computing precision and recall, a R-Y error is still considered a true positive550

result. Note that, unless otherwise specified, precision is always equal551

to one, meaning that no tra�c light is erroneously detected. Finally, note552

that computation time is measured excluding the time needed to acquire the553

input image.554

To conduct human-based experiments TL-recognizer was implemented555

into a mobile application that collects live input from the camera and the556

accelerometer and that implements basic versions of the TL-logic and TL-557

Navigation modules. The application continuously runs TL-recognizer with558

the acquired frames and creates three messages for the user: ‘not found’,559

‘stop’ and ‘go’: the first indicates that no tra�c light was found, the second560

indicates that a red or yellow AOU was detected and the third one indicates561

that a green AOU was detected. To convey these messages, the application562

uses spoken messages (through the system text-to-speech synthesizer), two563

clearly distinguishable vibration patterns (for ‘stop’ and ‘go’ messages) and564

a visual message for subjects that are partially sighted (the entire screen565

becomes black, red or green).566

The experiment involved 2 blind subjects and 2 low-visioned subjects567

(unable to see the tra�c lights involved in the experiment). The experi-568

ments took place in di↵erent illumination conditions. All subjects have been569

trained for about one minute on how to use the application. Then, in a real570

urban intersection, subjects were asked to walk towards a crossroad and to571

determine when it was safe to start crossing in a given direction (straight,572

left or right) i.e., when a green tra�c light appears right after a red one. For573

each attempt, a supervisor recorded whether the task was successfully com-574

pleted and took note of any problem or delay in the process. Each subject575

repeated this task five times. Finally, the subjects were asked to answer a576

questionnaire.577

For what concerns the devices used during the experiments, the images578

were collected with a Samsung Galaxy Camera with Android 4.1. Computer-579

based and human-based experiments were conducted with a Nexus 5 device580

with Android 5, which, with respect to a Galaxy Camera, has a faster CPU581

and is also more ergonomic for the subjects involved in the human-based582

tests9.583

9The choice of using a Galaxy Camera to collect images was driven by the fact that,
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Figure 16: Pixels composing AOUs

5.2. Parameters tuning.584

The recognition technique presented in Section 3 uses several system pa-585

rameters that need to be tuned. Section 3.2 describes the tuning process of586

the parameters used for image acquisition. The tuning of other parameters587

that mainly a↵ect system performance is described in the following.588

One set of parameters defines the boundaries of the range filters (see Al-589

gorithm 1). To tune these values each pixel composing AOUs (if present) was590

sampled in the 501 pictures composing the tuning dataset. This was obtained591

with a semi-automated process: first, a few pixels were manually sampled,592

hence defining broad ranges. Then, by running the algorithm with these593

ranges, a set of contours representing the AOUs were extracted, together594

with contours representing other objects. Thanks to picture annotations,595

the contours representing AOUs were automatically identified and the values596

of all pixels included in these contours were stored. From this set of pixels597

white pixels (i.e., v = 255) and dark pixels were excluded.598

The selected pixels are shown in Figure 16 where green, red and yellow599

dots represent a pixel for a green, red and yellow AOU, respectively. Given600

these results, the smallest ranges to include all pixels were defined . Results601

are shown in Table 6. Note that, since the yellowRed color lies on both sides602

of the hue circular axis, two range filters are defined and their disjunction603

yields the result.604

Threshold T is another important parameter that requires to be tuned.605

The following methodology was adopted: the image processing algorithm606

was run for each image in the tuning dataset. For each extracted patch607

at that time, this was the only available device supporting manual EV settings.
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Optical unit color H min H max S min S max V min V max
Green 70 95 100 255 80 255
yellowRed (first) 0 25 100 255 80 255
yellowRed (second) 166 180 100 255 80 255

Table 6: Range filters boundaries.

(see Algorithm 1) the value of the normalized cross correlation was stored,608

together with a boolean value representing whether the patch is actually an609

AOU or not (this is derived from the annotations). Among all patches in all610

images in the tuning dataset, the larger cross correlation value for a patch611

that does not represent an AOU is 0.586. Threshold T is set to this value,612

hence guaranteeing, in the tuning dataset, a precision of 1.613

Figure 17 shows the impact of the resolution on both recall and compu-614

tation time. As expected, computation time decreases almost linearly, since615

most of the costly operations are linear in the number of pixels in the image.616

At the same time, recall slowly decreases when using images with up to 3617

times less pixels (i.e., 1413 ⇥ 1884) that guarantee a recall of 0.887. With618

smaller images, recall decreases at a faster rate. For these reasons, images619

with a resolution of 1413⇥ 1884 were used in the tests. Note that, while in620

the tests the images are resized from their original size to 1413 ⇥ 1884, in621

the TL-recognizer prototype this operation is not necessary: indeed images622

are directly acquired at a similar resolution (i.e., 1536⇥ 2048) and this also623

significantly speeds-up the image acquisition process.624

5.3. Impact of the algorithm improvements625

With the basic version of the algorithm, the proposed technique incurs626

in the ‘R-Y error’ in 20 cases in the images in the tuning set. This means627

that, considering only the 168 images containing red and yellow AOU, the628

frequency of this error is above 10%. By using the improvement described in629

Section 4.1, the number of these errors is reduced by 75% with 5 errors and630

a frequency of less than 3%.631

Figure 18 shows computation time and recall for di↵erent values of the632

resize-factor parameter. As expected, there is a trade-o↵ between compu-633

tation time and recall (this is very similar to what was observed for the634

resolution parameter). By observing the results shown in Figure 18 it is pos-635

sible to conclude that value 3 is a good trade-o↵: computation time is halved636
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Figure 17: Impact of image resolution on
computation time and recall.
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Figure 18: Impact of resize factor on
computation time and recall.

(with respect to value 1), while recall decreases only by 0.03. For larger val-637

ues (e.g., 4) there is no substantial improvement in the computation time,638

while recall decreases by more than 0.1.639

Finally, it has been measured that with parallel processing computation640

time diminishes by about 40%: from an average computation time of 183ms641

to 113ms. Table 7 shows the system performance measured on the tuning642

dataset after having tuned the system parameters and adopting the algorithm643

improvements.644

Testset Precision Recall Computation time
Tuning 1 0.85 113ms
Evaluation 1 0.81 107ms

Table 7: Performances of TL-recognizer

5.4. Results with the evaluation testset645

Table 7 shows the results obtained with the evaluation dataset. Perfor-646

mance results are very similar to those obtained with the tuning dataset.647

While conducting the evaluation with the testset it has been observed648

that computation time is influenced by the total number of contours that are649

processed. For example, images with an irregular background (like Figure 19)650

take much longer to compute than average images. For example, Figure 20651
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Figure 19: Frame in a
sunny day.

Figure 20: Contours ex-
tracted from Figure 19

Figure 21: Frame during
night.

shows the contours extracted from Figure 19: the bright background behind652

the trees results in more than 8000 contours to be processed. Clearly the653

great majority is discarded thanks to ‘distance’ and ‘width’ constraints, but654

still 80 of them need to be validated. While the overall result is correct (no655

tra�c light is detected), the computation time for this frame is more than656

500ms, about 5 times higher than the average time.657

The above observation raises a more general question: how does compu-658

tation time vary in the di↵erent illumination conditions? In sunny days it659

is more likely to have bright surfaces that generate a high number of con-660

tours, like in Figure 19. Indeed, the average computation time with high661

light intensity is 196ms. Vice versa, with low light intensity (e.g., at night),662

since fixed camera parameters are used, the input image is almost entirely663

black, with the exception of tra�c lights and other sources of light, like street664

lamps and car beacon lights. For example, in Figure 21 a single contour is665

extracted for the green color (there is a small green AOU in the center of the666

image) and 5 contours are extracted for the ‘yellowRed’ color (in the figure,667

in addition to the green AOU, there are 5 small bright dots corresponding to668

two car beacon lights and a street lamp). Hence, with low light intensity, the669

computation time is 52ms, on average. In the two intermediate illumination670

conditions i.e., high and mid light intensities, the average computation times671

are 124ms and 90ms, respectively.672

28



5.5. Results of the human-based evaluation673

Overall, all subjects have been able to successfully complete the assigned674

tasks. The only exception was with the first attempt made by the first675

subject: since he was pointing the camera too high up and almost towards676

the sky, the tra�c light was always out of the camera field of view. The677

problem was solved by simply explaining to the subject how to correctly678

point the camera. In the following experiments with the other subjects this679

was explained during the training phase. Note that this problem could also680

be solved by monitoring the pitch angle and by warning the user if the he/she681

is pointing too high or too low.682

During this experiment it has been observed that the two blind subjects683

needed a slightly longer time (up to about 5 seconds) to find the tra�c light.684

This is due to the fact that they could not precisely predict where the tra�c685

light was and hence needed to rotate left and right until the tra�c light686

entered the camera field of view. On the contrary, the two partially sighted687

subjects managed to find the tra�c light almost instantaneously even if they688

could not see it. One possible motivation is that the two partially sighted689

subjects had a better understanding of their current position with respect690

to the crossroad and a more developed ability to predict the position of the691

tra�c light.692

For what concerns the questionnaire, all subjects agree that the appli-693

cation is easy to use and useful. There are some comments that are worth694

reporting. One subject observes that this application would be very useful695

because some tra�c lights are still not equipped with acoustic signal and,696

even if they are, in some cases they are not working properly and in other697

cases it takes some time to find the button to activate the signal (in Milan698

acoustic tra�c lights need to be activated by a button positioned on the699

tra�c light pole). Another subject observes that he would use this appli-700

cation only when an acoustic tra�c light is not available, because it is not701

convenient to hold the device in one hand while holding the white cane on702

the other one. All subjects agree on the fact that the vibration pattern is the703

best way to get the message. Indeed, audio messages can be hard to listen704

due to tra�c noise, as observed by one subject. Visual instructions are also705

not practical, according to both low-visioned subjects, as they are not always706

clearly visible.707
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6. Conclusions and future work708

This paper presents TL-recognizer , a system to recognize pedestrian traf-709

fic lights aimed at supporting people with visual impairments. The proposed710

technique, in addition to the pure computer vision algorithms, implements a711

robust method to acquire images with proper exposure. The aim is to guar-712

antee robust recognition in di↵erent illumination conditions. Experimental713

results show that TL-recognizer actually achieves this objective and is also ef-714

ficient, as it can run several times a second on existing smartphones. Positive715

results were also obtained with a preliminary evaluation conducted on sub-716

jects with VIB: they were able to detect tra�c lights in di↵erent illumination717

conditions.718

In future work it would be interesting to integrate TL-recognizer with719

a video tracking system, possibly based on the use of accelerometer and720

gyroscope. Also, user interaction should be carefully studied, with the aim721

of providing all the required information without distracting the user from its722

surrounding environment. The design of e↵ective user interfaces will become723

even more challenging if TL-recognizer is integrated with other solutions724

that collect and convey to the user contextual information, for example, the725

current address or the presence of pedestrian crossings.726

Regarding exposure robustness, improvements could be derived from the727

adoption of HDR techniques to extend the acquisition dynamic range. In728

this case tests should be performed to verify the trade-o↵ between reliability729

gains and computational costs.730

In order to ease the adoption of the proposed technique in di↵erent coun-731

tries, a (semi) automated technique can be implemented to tune the param-732

eters. This could be possibly based on a learning technique that gradually733

tunes the parameters in order to adapt to di↵erent contexts.734

An e↵ort will also be devoted to the development of a commercial product735

based on TL-recognizer . Indeed, it could be possible to integrate this software736

with iMove, a commercial application that supports orientation of people737

with VIB developed by EveryWare Technologies. This will require tuning738

the system in order to detect pedestrian tra�c lights in countries other than739

Italy. Also, in the near future it will be possible to implement TL-recognizer740

as an application for wearable devices (e.g., glasses). This will solve one of741

the main design issues: the fact that the user needs to hold the device in one742

hand.743
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Appendix A. Proof of formal results744

Appendix A.1. Proof of Property 1745

The notation used in the proof refers to Figures A.22 and A.23.746

Proof. The ground is approximated to an infinite plane. Thus, line l, which747

points from the device camera to the horizon, is parallel to the ground plane748

and angle \FDP is ⇡/2.749

We define h through its angle ✓ and a point P where h passes. The
general form is:

sin(✓)x+ cos(✓)y + (sin(✓)P
x

+ cos(✓)P
y

) = 0 (A.1)

We now show how to compute ✓ and P .750

Consider Figure A.22. Let P be the point where the image plane intersects751

line l. Thus, point P lies on the horizon line h and P is inside the image.752

Also, since point D is the device, segment DC is perpendicular to CP . Hence753

PCD is a right triangle. Since CD is the focal distance f and angle PDC754

is the device pitch angle ⇢, the distance (in pixel) between the image center755

C and point P is d = f · tan(⇢).756

In the image plane, the device roll ✓ is the inclination of the device’s x757

axis with respect to the ground plane. Since the horizon line h is parallel758

to the ground plane, ✓ is also the inclination of the horizon in the image.759

Consider Figure A.23. Let Q be the projection of C on the line parallel to760

the x axis (in the device reference system) that passes through P . Since761

[CPQ + ✓ = ⇡/2, it follows that [PCQ = ✓. Since the distance d is known,762
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then the distance between point P and point C along the x axis is d
x

=763

PQ = d · sin(✓). Analogously, the distance between point P and point C764

along the y axis is d
y

= CQ = d · cos(✓). Thus, the coordinates of point P765

are P =< C
x

� sin(✓)d, C
y

� cos(✓)d >.766

Finally, substituting d and P in Equation A.1 we obtain:

sin(✓)x�cos(✓)y�sin(✓)(C
x

+tan(⇢) sin(✓)f)+cos(✓)(C
y

+tan(⇢) cos(✓)f) = 0
(A.2)

767

Appendix A.2. Proof of Property 2.768

To ease the reading of the proof, please refer to Figure 13. Note that,769

in the figure, points B and T are above point C. Since d1 is defined as the770

directed vertical distances between C and B, in case B is below C, the value771

of d1 is negative. The same holds for d2. Under this consideration, it is easily772

seen that the following proof holds when both B and T are below C and also773

when B is below C and T is above C.774

Proof. Since d
h

= DA, by considering triangle DAG, it holds that

d
h

= DA = GD · cos (\GDA) (A.3)

Thesis easily follows by showing that

GD =
l
h

· sin(⇡/2� arctan(d2
f

)� ⇢)

sin(arctan(d2
f

)� arctan(d1
f

))
=

l
h

· cos(arctan(d2
f

) + ⇢)

sin(arctan(d2
f

)� arctan(d1
f

))
(A.4)

and
\GDA = arctan(

d1
f
) + ⇢ (A.5)

For what concerns GD, by considering triangle GED we have:

GD =
EG · sin (\GED)

sin (\EDG)
(A.6)

EG is the lens height l
h

given in input.775

\EDG is equal to \TDB that, in turn, is equal to [TDC �\BDC. Since
TDC and BDC are right triangles, it holds that [TDC = arctan(CT

CD

) and
\BDC = arctan(BC

DC

) where CT = d2, BC = d1 and CD = f . Hence:

\EDG = \TDB = arctan(
d2
f
)� arctan(

d1
f
) (A.7)
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For what concerns \GED, by considering right triangle EDA we have
that:

\GED = \AED = ⇡/2�\EDA = ⇡/2� ([EDI + [IDA) (A.8)

where [EDI = [TDC and [IDA is the device pitch ⇢. So, it follows:

\GED = \AED = ⇡/2� arctan(
d2
f
)� ⇢ (A.9)

For what concerns \GDA, it is equal to [GDI + [IDA where [GDI = \BDC
and [IDA is the device pitch ⇢. Hence:

\GDA = arctan(
d1
f
) + ⇢ (A.10)

Finally, we show the value of d
v

= AG. Consider the right triangle ADG
where AD = d

h

and \GDA is known (see above). Consequently,

d
v

= AG = AD · tan (\GDA) = d
h

· tan(arctan(d1
f
) + ⇢) (A.11)

776

Appendix A.3. Proof of Property 3.777

Notation used in the following proof refers to Figure 14.778

Proof. Consider right triangle ADB: \ADB = arctan(AB/AD) where AB =779

w
c

/2 and AD = f .780

Now consider right triangle CDE: CE = CD · tan(\CDE) where CD = d

and \CDE = \ADB. Hence:

EF = 2 · CE =
d · w

c

f
(A.12)

Finally, consider right triangle FEG:

w = GF = EF/ cos(↵) =
d · w

c

f · cos(↵) (A.13)

781
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