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Abstract

Joint bleeding is a common occurence for people with hemophilia and, if untreated, can result in

hemophilic arthropathy. Ultrasound imaging has recently emerged as an effective tool to diagnose

the distension of a joint recess caused by joint bleeding. However, no computer-aided diagnosis tool

exists to support the practitioner in the diagnosis process. This paper addresses the problem of

automatically detecting the subquadricipital recess of the knee and assessing whether it is distended

in ultrasound images collected from patients with hemophilia. After framing the problem, we

propose two different approaches: the first one adapts a one-stage object detection algorithm for

the task, while the second one is a multi-task approach with a classification and a detection branch.

The experimental evaluation, conducted with 483 annotated images, shows that the solution based

on object detection alone has a balanced accuracy score of 0.74 with a mean IoU value of 0.66, while

the multi-task approach has a higher balanced accuracy value (0.78) at the cost of a slightly lower

mean IoU value.
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1. Introduction

Hemophilia is a hereditary blood coagulation disorder that results in an increased risk of bleeding,

due to trauma or spontaneously, which worsens with the severity of the disease. Bleedings can
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frequently occur also inside joints (mostly ankles, knees and elbows) and muscles, which together

account for around 80% of the bleeding events in patients with Hemophilia [1, 2]. Joint bleeding

causes the distension of the affected joint recess and, if recurrent, can result in synovial hyperplasia,

osteochondral damage, and hemophilic arthropathy [3]. Thus, it is essential to promptly recognize

joint recess distension.

Physical examination may not be sufficient to diagnose joint recess distension, since in the early

stage it can be asymptomatic [4]. Magnetic Resonance Imagining (MRI) is generally considered

the gold standard tool for precise evaluation of joints but it is not practical for regular follow-up of

patients with hemophilia due to the high costs, limited availability and long examination times [4].

An alternative solution is ultrasound (US) imaging [5] that, contrary to MRI, has a low cost,

short examining time and it is widely accessible [6]. Hemophilia Early Arthropathy Detection with

UltraSound (HEAD-US) is a standardized protocol designed to guide the practitioner in acquiring

relevant US images and interpreting them for the diagnosis of joint recess distension in the 6 most

commonly affected joints [7].

Computer aided diagnosis (CAD) systems can improve detection accuracy [8] and reduce the

image reading time required by the practitioners [9]. The potential effectiveness of US-based CAD

systems to support the diagnosis of joint distension in people with hemophilia is suggested by recent

studies that focus in identifying joint health related to injuries [10].

In this work, we formulate the research problem of supporting the physicians in diagnosing joint

recess distension in patients with hemophilia using a CAD system. The problem consists of detecting

the joint recess inside US images and classifying it as Distended or Non-distended. Specifically, we

focus on the main joint recess of the knee, also called SubQuadricipital Recess (SQR). We consider

the SQR longitudinal scan, which is one of the three scans specified in HEAD-US protocol for this

joint [7]. One prior work addresses the problem of detecting SQR distension in pediatric patients

with hemophilia [11], but specific details about the methodology and the evaluation are not reported.

Besides formulating the research problem, we also propose two approaches to address it. The

first one, called the Detection approach, adopts state-of-the-art object detection to find Distended or

Non-distended SQR inside the US image and returns the detection having the highest confidence.

The second solution, called the Multi-task approach uses a multi-task learning process, with the

aim of simultaneously detecting the SQR inside the US image and classifying it as Distended or
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Non-distended.

The experiments were conducted on a new dataset of images that we collected and annotated due

to the lack of other publicly available datasets. In our dataset, we collected more than 450 images

from 208 adults subjects with hemophilia, which is consistent with other studies in the literature [11,

12, 10]. In the experiments we compared the two proposed solutions among themselves and with

two baselines, one Classification baseline and one Detection baseline. Results reveal that both the

Multi-task approach and the Detection approach improve over the Classification baseline in terms

of balanced accuracy. Furthermore, the Multi-task approach outperforms both the Classification

baseline and the Detection approach in terms of balanced accuracy and sensitivity, which, as we

motivate in the following, is particularly relevant for the given problem. For what concerns the

detection accuracy, the Detection approach has a slightly better performance than the Multi-task

approach, and it remains in line with the Detection baseline.

To sum up, the novel contributions of this paper are the following:

• We formulate the problem of detecting and classifying SQR distensions from US images.

• We propose two solutions to tackle this problem.

• We evaluate and compare the proposed solutions on a dataset collected from 208 patients.

2. Problem formulation

In this research, we address the problem of the automated detection of the SQR recess and its

classification as Distended or Non-distended.

2.1. Ultrasound images

Ultrasound (US) [13] is a very popular medical imaging technique. It is portable, safe and

affordable and therefore commonly used in healthcare [14]. However, some limitations of this tech-

nique are the high dependence on the operator expertise level and possible noisiness of the acquired

images [4].

US imaging uses a sound wave signal at high frequencies. The reflections of the signal are then

measured to represent the image. This technique can produce images with a high spatial resolution

of the internal structures of the body, like tendons, bones, blood, and muscles [5]. The images are
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represented in grayscale, where each pixel value describes the density of the material the signal

encounters. Light areas represent echogenic tissues (i.e., that reflect sound waves) like bones, while

dark areas represent anechogenic (i.e., that do not reflect sound) structures such as liquids. Another

effect to take into account is that echogenic tissues, such as bone, shield the signal that is unable

to travel through them, thus making it impossible to detect anything below them. An example is

shown in Figure 1: the patella is clearly distinguishable in light color (see the red box) while the

area below it is almost completely black.

2.2. SQR longitudinal scan

We focus on one of the three scans of the knee joint specified in HEAD-US protocol for the col-

lection and diagnosis of joint recess distension in patients with hemophilia [7]: the SQR longitudinal

scan. This scan is used to assess SQR distension and contains different characterizing elements (see

Figure 1):

• The femur (blue box) usually appears as a light thick line, approximately horizontal, starting

from the left side of the image and extending towards the right, often in the lower half of the

image.

• The patella (red box) usually appears as a curved light line, positioned at the right border of

the image, often in the top half and not entirely captured.

• The quadriceps tendon (brown box) appears as a fascicular structure composed of echogenic

parallel lines (i.e., they appear as thin horizontal stripes) that originate from the patella.

The SQR (green box) is positioned between the femur and the patella and often contains at least a

small quantity of liquid, hence it is dark. In some cases, the joint recess membrane can be visible

in grey. The SQR size and shape vary depending on many factors including whether it is distended

or not, as explained below.

Figure 1b shows how the probe must be positioned during the acquisition of the SQR longitudinal

scan. In the figure, the yellow box is the area that is captured by the US image shown in Figure 1a,

while the green box is the SQR. To correctly acquire this type of image, the knee has to be bent

at about 30◦. The probe must be positioned right at the beginning of the patella and moved

horizontally to identify the correct key features previously described.
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A number of ultrasound probe parameters need to be specified in order to properly acquire

SQR longitudinal scans. Some of these parameters need to be personalized for each patient (like

gain, focus and dynamic range), while the value for other parameters can be pre-determined, like

frequency and depth that in our study were set to 12Mhz and 40− 50mm, respectively.

(a) Example of SQR longitudinal scan (b) Probe positioning

Figure 1: Image acquisition

2.3. Detection and classification of SQR distension

A joint recess can be distended due to three main reasons: if it is filled with synovial liquid,

if it is filled with blood (a condition known as hemarthrosis), and if its membrane is thicker due

to an inflammation known as synovitis. The approximate recess position can be inferred from

the location of the three characterizing elements described in Section 2.2 (i.e., patella, femur, and

tendons): the recess is positioned below the tendons, above the right-most end of the femur and on

the patella bottom-left. To determine the exact position of the recess, the practitioner observes the

anechogenic area that is present in the region. The recess appears as a dark area surrounded by a

lighter membrane.

To determine whether the SQR is distended, we rely on the assessment of the US image by a

practitioner. The practitioner observes the recess and qualitatively establishes whether it is swollen,

a sign that it is filled with liquid or that its membrane is thickened. Instead, a non-distended recess

should appear as a thin line. We highlight that the use of subjective assessment of imaging data

as ground truth is a common practice in clinical evaluation [10]. Indeed, while two alternative
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approaches are possible, they are impractical: MRI is expensive and time consuming [4] while

the aspiration of the liquid through through puncture (arthrocentesis) is invasive, particularly in

patients with bleeding disorders such as hemophilia [15].

Figure 2 shows three examples of the longitudinal SQR scan. In Figure 2a the SQR is the dark

area shown in the green box. In this case the SQR is thin, hence it is not distended. Vice versa,

in Figure 2b the SQR is much thicker, indicating that it is distended. While Figure 2a and 2b

show two characteristic examples with stark differences, there are borderline cases where the SQR

appears slightly enlarged but it is not distended (see Figure 2c) or it is very slightly distended.

(a) Non-distended SQR (b) Distended SQR (c) Borderline Non-distended SQR

Figure 2: Examples of longitudinal SQR scans

An interview, conducted with physicians from the Angelo Bianchi Bonomi Hemophilia and

Thrombosis Center (two of which are also authors of this paper), revealed the need for a computer

aided tool (CAD) supporting the physician in diagnosing SQR distension. The tool can be used

as a part of a protocol for the early diagnosis of hemarthrosis, which is particularly relevant for

hemophilic patients [16, 4]. Indeed, directly identifying hemarthrosis in US images is particularly

challenging as it requires to distinguish blood from synovial fluid and blood clots from synovial

hyperplasia, which appear very similar. To support the physician during the diagnosis, the CAD

tool should identify the position of the SQR inside the specified US scan and classify it as Distended

or Non-distended.

2.4. Problem modelling

In terms of machine learning, the CAD tool needs to implement a combination of classification

and detection techniques. For what concerns the classification, existing models can be directly
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applied to the given problem, defining two classes, one for the Distended and the other for the

Non-distended recess.

For what concerns the detection problem, we model the recess as the target object to detect. Two

possible solutions can be adopted: to model two distinct classes of objects (i.e., one for Distended and

another for Non-distended recesses) or to model a single class (i.e., representing both Distended and

Non-distended recesses). In both cases, the direct application of existing object detection algorithms

would not correctly model the given problem. Indeed, existing object detection techniques assume

that multiple objects can be detected in a single image, from the same or different classes. This

is appropriate, for example, in the problem of tumor detection, since multiple malign and benign

tumors can be visible in the same image [17]. Instead, in the given problem, we can infer from

domain knowledge that a single object (i.e., a recess) is visible in each image.

As we show in the following, with the Detection approach we model two distinct classes, while

with the Multi-task approach we model a single class. Also, both solutions extend existing object

detection techniques by returning a single object for each input image.

3. Methodology

We propose two solutions for the problem defined in Section 2. The first solution, which we name

Detection approach, is described in Section 3.1. It is based on a state-of-the-art detection technique,

adapted to solve both the detection and the classification problems. The second solution, which

we call Multi-task approach (see Section 3.2), is a multi-task network with a branch that solves the

detection problem and another one that solves the classification problem.

3.1. Detection approach

Figure 3 depicts the network architecture of the Detection approach. Each input US image is

processed by the YoloV5 [18] object detector that returns a set of candidate SQRs, each characterized

by a confidence value, a bounding box and the label (Distended or Non-distended). Since in the

considered domain the input image actually contains exactly one SQR, the Detection Post-processing

module selects the prediction with highest confidence and outputs its bounding box and its label.

We train the network to recognize two classes of objects: Distended SQRs and Non-distended

SQRs. Since the amount of labeled images in in this domain is generally scarce, it is difficult to
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Figure 3: Overall architecture of the Detection approach

collect a sufficiently large dataset to fully train a robust detection network. Therefore, we adopt

a transfer learning approach [19] to initialize the network’s weights. Specifically, we use the pre-

trained weights publicly available for the YoloV5 network, trained on the MS COCO dataset [20].

Finally, the network is fine-tuned on the actual dataset containing the labeled US images.

YoloV5 is a single stage detector designed to detect different objects in a image and directly

assign them the corresponding class. YoloV5 is an optimized version of the YoloV4 framework [21],

that has been widely used in the literature for object detection tasks. Specifically, among the five

models available in YoloV5, we use the large model, which was empirically selected as it achieved the

best results in preliminary tests. YoloV5 is internally divided into a feature extraction sub-network

and a detection sub-network. It also adopts a specific loss function and an early stop criterion.

These four concepts are briefly described in the following.

Feature Extraction sub-network. The Feature Extraction sub-network is a Convolutional Neural

Network (CNN). Specifically, it is a CSPDarknet53 network, that was originally proposed in [22]

and that was shown to be particularly effective for object detection [21] and ultrasound image
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classification [23].

Detection sub-network. The Detection sub-network is divided into a neck and a head parts. The

overall goal of the neck part is to divide the image into multiple small fragments with the objective

of simplifying further analysis by performing semantic segmentation (by associating categories to

pixels) as well as instance segmentation (classifiying and locating objects at pixel level). The head

part is a one-stage detector [24] that processes the features returned by the neck part and outputs

the bounding boxes of the detected elements along with their predicted class.

Loss function. We use the default YOLOV5 loss function that is shown in Equation 1 and that is

computed as the weighted sum of three values: a) the localization loss (Lbox) is computed with the

Complete IoU loss function (CIoU) [25], and represents the error in the position of the predicted

bounding box; b) the class loss (Lc) is computed with Binary Cross-Entropy (BCE) and represents

the error in classifying the predicted class; c) the objectness loss (Lobj) is computed with BCE and

represents to which extent the predicted bounding box actually encloses an object of interest. The

weights of these values are hyper-parameters that need to be empirically tuned (see Section 5.4).

L = αLbox + βLobj + γLc (1)

Early stopping criterion. We use the default YOLOV5 early stopping criterion to terminate the

training if there are no improvements in the results for a given number of training epochs. This

default criterion considers the mean Average Precision (mAP) of the detection, i.e., the ratio of

correctly classified bounding boxes considering a given threshold of the IoU with the corresponding

ground truth. Note that, in a multi-class scenario, this criterion factors for both the correct classi-

fication and the correct detection of the objects. Specifically it is computed as the weighted sum of

the mAP@0.5 and the mAP@0.5:0.95 where a weight of 0.1 is given for mAP@0.5, and a weight of

0.9 is given for mAP@0.5:0.95 in order to prioritize more accurate bounding boxes detection.

3.2. Multi-task approach

The Detection approach addresses the problem of classifying the SQR as distended or not,

by selecting the label of the detection with the highest confidence. An alternative (and possibly

more natural) solution would be to classify the entire image. However, this would not provide the
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needed SQR bounding box. For this reason we propose the Multi-task approach that pairs image

classification and detection.

INPUT

Feature 
extraction 

sub-network

Classification 
sub-network

Detection 
sub-network

NETWORK

Multi-task loss
Detection 

post-processing

0.87

OUTPUT

Not distended Distended

0.87
0.05

0.25

SQR (distended or not)

Figure 4: Overall architecture of the Multi-task approach

The proposed network is a modified version of the network used for the Detection approach. The

key modification consists of a Classification sub-network that performs the SQR binary classification.

The input image is first processed by the Feature Extraction sub-network, that is shared for both

classification and detection tasks. Then the extracted features are simultaneously processed by the

Detection sub-network and the Classification sub-network. The Classification sub-network processes

the features and returns the predicted SQR class (i.e., distended or not) considering the whole

image.

Differently from the Detection approach solution, the goal of the Detection sub-network in the

Multi-task solution is simply to detect the SQR, without providing information about the distension.

Hence, the Detection sub-network network is trained with a single class and it returns a set of

bounding boxes, all belonging to the same class, each with an associated confidence value. The
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Detection Post-processing module selects the bounding box with the highest confidence. During

the training phase, the multi-task loss jointly considers the errors on classification and detection to

update the network weights.

3.2.1. Classification sub-network

Figure 5 shows the Classification sub-network of the Multi-task Approach. The first layer of the

Pooling layer

Fully Connected

Dropout

Flatten

512x1x1 1024 512 2

Figure 5: Classification sub-network architecture

sub-network is an Adaptive Average Pooling Layer in charge of reducing the feature dimensions to

a fixed 2-dimensional output size. Then, the output is provided to a Flatten Layer, that converts

2-dimensional data to a 1-dimensional array. This array is then processed by a fully connected

network composed of two hidden layers of 1024 and 512 units, respectively. These layers use a ReLu

activation function. A dropout layer is applied between the two hidden layers with the objective of

reducing overfitting. Finally, a Softmax layer is in charge of providing the most likely class (i.e.,

Distended/Non-distended). The architecture of this network has been determined empirically.

3.2.2. Multi-task loss

Training the multi-task network requires a custom loss function that simultaneously takes into

account the classification and detection errors. For this reason, we adapt the loss function used for

the Detection approach by adding a new loss term that represents the errors of the Classification sub-

network. Specifically, we adopt a typical solution in binary classification that consists in computing

the classification error Lcls with a BCE function. Another difference with respect to the loss function
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used in the Detection approach, is that, in the Multi-Task approach, the Detection sub-network is

trained with a single class, hence there are no possible errors with class prediction. Thus, the Lc

parameter, considered in Equation 1, is always zero. So, the overall multi-task loss is computed

as the weighted sum of Lbox, Lobj , and Lcls, as shown in Equation 2. These weights are hyper-

parameters that need to be empirically tuned (see Section 5.4).

L = αLbox + βLobj + δLcls (2)

Since the datasets in this domain are usually highly unbalanced (e.g., in our dataset ≈ 75% of

the images are labeled as Non-distended), there is the risk that the network favors Non-distended

classifications, which in turn may increase the number of false negatives. In order to mitigate this

problem, we adjust the classification loss Lcls to give higher error values to false negatives (i.e.,

Distended SQR classified as Non-distended). This is achieved by adding an additional weight to

Lcls when the ground truth is Distended. Specifically, to achieve a balanced classification, the

weight is computed as the ratio between the Non-distended and Distended samples in the training

set. Thanks to this approach, the errors on the Distended samples have a more significant impact

on the overall loss.

3.2.3. Multi-task early stopping criterion

As specified above, for the Detection approach, the default YOLOV5 early stopping criterion,

based on mAP, is used to stop the training if no improvements are detected for a specified number

of epochs. Instead, for the Multi-task approach, since the detection is computed for a single class,

the mAP does not account for the classification accuracy but only considers the detection accuracy.

Thus, for the Multi-task approach, we consider a weighted sum of mAP@0.5 for the detection and

balanced Accuracy for the classification on the validation set. In particular, we provide a higher

weight (0.7) to the balanced accuracy and a lower one to to mAP@0.5 (0.3). This is due to the

fact that we prefer to be more accurate on the classification, at the cost of identifying slightly less

accurate (but still informative) bounding boxes. We consider a patience value of 100 epochs, which

means that the training is stopped if the early stopping criterion does not improve for the number

of epoch specified by the patience value.
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4. Dataset

Despite the fact that there are prior works that analyze US images of the relevant area (SQR

scan of the knee) [11, 12, 10], none of these works provides a publicly available dataset. For this

reason we collected a new dataset of 483 SQR longitudinal scan images of 208 adult patients with

hemophilia, aged 44.7±18.6, between January 2021 and May 2022. The dataset was collected thanks

to the collaboration with “Centro Emofilia e Trombosi Angelo Bianchi Bonomi” of the polyclinic of

Milan, a medical institution specialized in hemophilia. Images were annotated by expert physicians

specifically trained on the diagnosis of the distention of the SQR in hemofilic patients. The study

was approved by the institution’s ethics committee.

Before acquiring the dataset we first defined a standardized data acquisition protocol that in-

cludes: a) examination procedure based on the HEAD-US [7] protocol; b) guidelines on how to

use the ultrasound device during the visit, for example defining that the joint side (left or right)

should be annotated while acquiring the image itself; c) a procedure for data extraction from the

ultrasound device; d) a data pseudo-anonymization procedure.

For each patient, the physician collected several US images from various scans in different joints.

For this study we selected images of the SQR longitudinal scan. Two images of the SQR longitudinal

scan are typically collected during each visit, one for each knee (left/right) but for some patients we

only have one image while other patients were visited twice (often at a distance of several months),

hence having up to four images each.

4.1. Data Acquisition and annotation

Images were acquired using the Philips Affiniti 50 US device1 by a single specialized practitioner

during routine visits of hemophilic patients. When collecting the images, the probe was positioned

as shown in Figure 1b and the knee was flexed by 30◦. Each image has a resolution of 1024 × 780

and, as shown in Figure 1a, it contains acquisition parameters (saved as text in the image) and the

actual US scan (i.e., the yellow rectangle in Figure 1a), the size of which can vary.

The annotation procedure is organized into three phases. The first phase is image selection:

among all images acquired from the US scanner, those representing the SQR longitudinal scan of

1www.usa.philips.com/healthcare/product/HC795208/affiniti-50-ultrasound-system
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the knee are selected. The practitioner discards unsuitable images, like those of under-age patients,

of patients with a prosthesis or images with a wrong knee bending angle. After this phase, a total

of 483 images were selected. The second phase is the recess bounding box annotation. Using an

annotation tool [26], the practitioner identifies the SQR position with the approach presented in

Section 2.3 and draws the bounding box (a rectangle with edges parallel to the axes). The third phase

is class labelling: using the approach presented in Section 2.3, the practitioner evaluates whether

the recess is distended and enters this information in the annotation tool. Based on this procedure,

out of 483 SQR longitudinal scans, 360 were labeled as Non-distended and 123 as Distended.

4.2. Pre-processing

We pre-process the collected images to extract the actual US image (e.g., the yellow box in

Figure 1a). Indeed, as previously observed [27, 10] using the entire image as returned by the US

device can reduce classification accuracy as this part of the image does not contain information

needed for the required tasks.

As suggested by Tingelhoff et al. [28], we initially cropped the images manually. However, this

process is time consuming. We therefore developed an algorithm to automatically extract the US

scan from the collected image. Figure 6 shows the steps of the pre-processing algorithm. In the first

step, we measure and binarize the gradient of the image; we then remove connected pixel groups

composed of less than 1000 non-zero pixels; afterwards, we dilate the image to fill small groups

of black pixels, and we perform an opening operation to remove groups of pixels not belonging to

the US scan that were merged with it in the previous steps. We crop the original image with the

bounding box of the white area resulting from the previous step. Finally the images are resized to

256× 256 pixels.

All images have been double-checked as part of the annotation process and no cropping error

was found, showing that the proposed automatic pre-processing is reliable.

5. Evaluation

In this section, we describe the experimental evaluation conducted on the dataset introduced

above. First, we present the baselines used in the study. Then, we describe the adopted evaluation

methodology, the metrics and we describe how we selected the hyper-parameters. Finally, we show
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Figure 6: Intermediate steps of frame extraction procedure

the results of the two proposed solutions and compare them among themselves and with the two

baselines. We conclude the section by showing examples of the application of the proposed solutions

and by discussing the results.

5.1. Baselines

To evaluate the effectiveness of the two proposed solutions, we compared them with two baselines,

one for each of the two tasks that we address: classification and detection.

The Classification baseline is a binary classifier that uses Darknet53 [24] as feature extractor

(i.e., the same one as in the Multi-Task and Detection approaches). The feature vector is then

passed to a fully connected layer that performs the classification. As in our proposed solutions,

the feature extractor was pre-trained and freezed during training. We consider this approach as

a baseline for the classification recognition rate since it represents a widely adopted solution for

medical image classification [29].

The Detection baseline is a object detector with the same architecture as the Detection approach.
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The main difference with respect to the Detection approach is that the Detection baseline detects

a single class, the SQR, without considering whether it is distended or not. The Detection baseline

outputs the object detected with the highest confidence. We selected this solution as a baseline

for the detection task because the technique is widely adopted in the literature [29] and, differently

from the Detection approach, it only focuses on the SQR detection task without considering the

classification task. Since the Detection baseline addresses a simpler problem than our solutions, it

represents an upper bound for the detection performance of our solutions.

In order to fairly compare the four techniques (two baselines and the two proposed solutions),

the data follows the same pre-processing and training pipelines described in Section 5.3. For the

same reason, all four techniques are evaluated using the same cross-validations splits.

5.2. Metrics

We define two sets of metrics: one for the detection and the other for the classification. For what

concerns the detection, we measure the average Intersection over Union (IoU). The IoU between

two plane figures is defined as the ratio between the area of their intersection and the area of their

union. When measuring the performance of a given technique, for each test image we measure the

IoU between the predicted bounding box and the ground truth bounding box. Then, we compute

the average of this metric among all test images. Prior literature commonly considers as correct the

detections with an IoU ≥ than 0.5 [30]. Thus, we consider this as a threshold for an acceptable IoU

result.

Considering classification, for each image we compare the ground truth class with the predicted

class hence computing if the result is a True Positive (TP), a True Negative (TN), a False Positive

(FP), or a False Negative (FN). Note that the positive class is Distended and the negative class is

Non-distended. Then, we used the following classification metrics:

• Specificity: measures the ability of the model to identify true negatives. Specificity is defined

as TN
TN+FP

• Sensitivity: measures the ability of the model to identify true positives. Sensitivity is defined

as TP
TP+FN
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• Balanced accuracy: mean between specificity and sensitivity. It is considered a sounder metric

compared to accuracy when the class imbalance is high [31]. Balanced accuracy is defined as
sens+spec

2

• Confidence interval (CI): the 95% confidence interval for the classification and detection re-

sults. The CI provides a reliability measure of the results by indicating the range in which the

results of the repetitions of the same experiment should fall 95% of the time, thus showing

the consistency level of the reported results [32].

5.3. Evaluation methodology

The evaluation of the recognition rate of the proposed solutions is based on a 5-fold cross-

validation. In order to avoid high correlation bias, the training and the test splits do not have

images from the same patients in common. The consequence is that we could not exactly divide

the dataset in 80% and 20% splits and therefore the splits have slightly different number of images.

An example fold subdivision can be found in Table 1. Each training fold was further split: 80%

as training set and 20% as validation set. During training we used SGD with momentum [33] as

optimizer.

Fold 0 Train Test Total
Non-distended 289 71 360
Distended 97 26 123
Total 386 97 483
Total patients 166 42 208

Table 1: Example data distribution in Fold 0 of the 5-fold cross-validation

5.4. Hyper-parameters selection

In order to properly tune the many hyper-parameters of our network, we adopt an evolutionary

approach [34]. Given a fitness function, an evolutionary algorithm evaluates the best fitting set

of hyper-parameters thanks to mutation and cross-over operations. For the sake of this work,

we considered the evolutionary method proposed in YOLOV5, that only considers the mutation

operation with 90% of probability and 0.04 of variance. Each mutation step generates a new set

of hyper-parameters given a combination of the best parents from all the previous generations.

The fitness functions used for the hyper-parameters selection for the Detection approach and the

17



Multi-task approach correspond to the early stopping criteria introduced in Sections 3.1 and 3.2.3,

respectively.

In order to balance the need for a high number of evolution epochs with limited computational

resources, we run the evolutionary algorithm only on one fold. We executed our evolutionary

algorithm for 300 epochs on each solution. Considering the Multi-task approach, the best results

have been obtained at the 193th epoch, while for the Detection approach the best set of hyper-

parameters were found at the 4th epoch. The set of hyper-parameters resulting from evolution

have been used to evaluate our approaches on the complete cross validation procedure. The most

relevant discovered hyper-parameters are presented in Table 2

Learning rate Dropout SGD momentum α β γ δ

Detection 0.00369 - 0.77628 0.06868 0.49062 0.2343 -
Multi-task 0.0018 0.11008 0.62403 0.05427 0.67598 - 0.41855

Table 2: Selected hyper-parameters

Note that γ is a weight associated to the Lc loss that is only considered in the Detection approach,

while δ is a weight associated to the Lcls loss that is only considered in Multi-task approach. Finally,

the Dropout rate is only included in the Classification sub-network of the Multi-task approach.

5.5. Results

Table 3 shows the performance of the two baselines and of the two proposed solutions. Note

that, in order to fairly compare the Detection approach with the Detection baseline and the Multi-

task approach, the average IoU for the Detection approach (marked with *) is computed ignoring

the predicted class. This means that, for the detection approach, we consider the bounding-box of

the detection with the highest confidence, without considering if the class of the detected box is

actually correct.

Balanced accuracy Specificity Sensitivity IoU
Classification baseline 0.73 ± 0.03 0.85 ±0.09 0.61 ± 0.13 -
Detection baseline - - - 0.66 ± 0.02
Detection Approach 0.74 ± 0.07 0.97 ±0.03 0.52 ± 0.12 0.66 ± 0.01*
Multi-task Approach 0.78 ± 0.05 0.92 ± 0.04 0.64 ± 0.09 0.63 ± 0.02

Table 3: Evaluation results (reported as mean among the folds ± standard deviation)
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Since both the early stopping criterion and the hyper-parameters selection methods for the

Multi-task approach are designed to prioritize the classification accuracy at the expense of the

detection accuracy, its balanced accuracy is confirmed to be higher than for the Detection approach.

Specifically, the Detection approach has a balanced accuracy of 0.74 (95% CI [0.73− 0.75]), slightly

improving over the Classification baseline which reaches a balanced accuracy of 0.73 (95% CI [0.72−

0.74]). The Multi-task approach has a balanced accuracy of 0.78 (95% CI [0.77−0.79]) outperforming

both the Classification baseline and the Detection approach. The IoU metric is 0.66 (95% CI

[0.65 − 0.66]) for both the Detection baseline and the Detection approach and decreases to 0.63

(95% CI [0.62− 0.63]) for the Multi-task approach.

As discussed in Section 5.7, these results show that the Multi-task approach is the most suitable

solution for the considered problem since it has an acceptable level of balanced accuracy and IoU

according to prior literature [35, 30]. This conclusion is also supported by taking into account

the confidence intervals: the Multi-task approach confidence interval range is entirely above the

thresholds for both classification and detection, and the balanced accuracy CI does not intersect

with the Detection approach interval, suggesting that its performances are consistently better [36].

The increase in balanced accuracy value of the Multi-task approach is largely influenced by the

increase in sensitivity. The reason for this increase is likely due to the adjusted classification loss

in the Multi-task approach introduced to mitigate the unbalanced data problem (see Section 3.2.2).

Indeed, considering the confusion matrices in Figure 7, we can observe that the Detection approach

has 59 false negatives (48%), out of a total of 123 images labelled as Distended, compared to the

44 false negatives in the Multi-task approach (38%). This improvement comes at a cost of a lower

specificity value that, however, is less relevant than sensitivity in the given domain, as we motivate

in Section 5.7.

5.6. Examples

In order to better illustrate how our approaches work, in the following we show some examples

of correct and incorrect output.

Figure 8 shows two US images that have been correctly classified by both approaches and that

are relatively easy to classify by medical experts. Figure 8a shows an US image where the femur,

the patella and the SQR are clearly visible, and the SQR is thin (i.e., not distended). On the other
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(a) Multi-task approach
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(b) Detection approach

Figure 7: Confusion matrices

hand, Figure 8b shows an example of a Distended SQR. In this case, the SQR is clearly thick and

hence distended.

(a) Non-Distended SQR (b) Distended SQR

Figure 8: Examples of images correctly classified by both solutions. The purple arrow points to the femur, the orange
arrow points to the patella, and the green box indicates the SQR.

Figure 9 shows four examples of images that are more challenging to classify even by medical
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experts. This usually happens when there is noise in the US scan (as in Figure 9c) or when the

SQR is borderline between Distended and Non-distended (as in Figure 9d). Figure 9a is correctly

classified by both approaches as Non-distended. Figure 9b is correctly classified by the Multi-task

approach but not by the Detection approach. Vice versa, Figure 9c is correctly classified by the

Detection approach and not by the Multi-task approach. Finally, both solutions wrongly classify

Figure 9d.

(a) Non-distended SQR (b) Distended SQR

(c) Non-distended SQR (d) Distended SQR

Figure 9: Examples of images that are intuitively hard to classify.

Considering the detection problem, Figure 10 shows US images where the two approaches de-

tected the SQR with the lowest and the highest IoU. In Figure 10a, the Multi-task approach wrongly

21



detects as SQR an image region that is similar to an actual SQR in terms of position and shape,

resulting in a very low value of IoU (0.33). In this case, also the Detection approach can not re-

liably detect the right target precisely, and indeed it detects only a small portion of the actual

SQR (IoU=0.05). Instead, in the example shown in Figure 10b the Multi-task approach accurately

detects the SQR (IoU=0.95), while the Detection approach identifies the same area with a lower

IoU (0.68).

Figure 10c shows the US image for which the Detection approach provided the lowest IoU value.

The problem is similar to that of Figure 10a: a region is erroneously recognized as a SQR because

it is similar to a SQR. In this case the detected bounding box does not overlap with the ground

truth, hence the IoU is zero. Instead, the Multi-Task approach basically detects the right target

(IOU=0.58).

Figure 10d shows instead the US image for which the Detection approach provided the highest

IoU value (0.96). In this case the Multi-task approach identifies the right target less precisely,

resulting in a IoU of 0.55.

5.7. Discussion

The experimental evaluation shows that the Multi-task approach results in a better balanced

accuracy compared to the Detection approach. This is particularly relevant for two reasons. First,

the balanced accuracy confidence interval of the Multi-task approach is completely above the thresh-

old of 0.75 that is reported to be a requirement for a medical test to be “useful” [35]. Hence the

Multi-task approach is suitable for our application domain.

Another important property of the Multi-task approach is that it yields a substantially higher

(+12%) sensitivity value with respect to the Detection approach at the cost of a lower (−5%)

specificity value. This is particularly important because, in the considered domain, sensitivity

should be privileged over specificity. Indeed, false negatives (captured by sensitivity) have worse

impact on the patient than false positives (captured by specificity). This is due to the fact that

a false positive prediction can lead to raise the practitioner’s attention when not needed and, in

the worse scenario, can lead to over-treatment (e.g., provide factor VIII when not actually needed)

which generally results in limited negative effects on the patient. Instead, a false negative prediction

can lead to under-treatment, which in turn can lead to permanent articular damage [3].
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(a) Worst detection by Multi-Task approach (b) Best detection by Multi-Task approach

(c) Worst detection by Detection approach (d) Best detection by Detection approach

Figure 10: Detection examples. Green represents the ground truth, red and blue the results of the Multi-Task
approach and Detection approach, respectively.

Considering the detection performance, we can observe that when the IoU is above 0.5, which

is a common threshold to define for a “correct” detection, the SQR is intuitively correctly detected

and hence can support the practitioner during the examination. For example in Figure 10d the

red box has a IoU of 0.55 and indeed it correctly detects the right area, although the bounding

rectangle slightly shorter and larger that the ground truth. With both proposed solutions the IoU

is above 0.5 in more than 82% of the cases (85% with Detection approach and 82% with Multi-task

approach). In these cases (and also in many cases in which the IoU is below 0.5) the target SQR is

correctly detected, but the detected bounding box is imprecise. There are only few cases in which
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the techniques detect the wrong target, as in the examples of Figures 10a and 10c.

6. Related work

In this section we first report the related work in the broad field of US-based CAD systems.

Then, in Section 6.2, we report the existing literature about the classification and detection of joint

recess distention in US images and we compare existing works with our solutions.

6.1. US-based CAD systems

Machine Learning (ML) techniques using medical imaging data have been investigated to support

physicians in diagnosing various conditions [37]. In particular, Ultrasound (US) [13] is a very popular

medical imaging technique, often used also as a data source for Computer-Aided Diagnosis (CAD)

systems [38, 14]. Indeed, despite its high dependence on the operator expertise level and possible

noisiness of the acquired images [4], US imaging is easily accessible, safe and affordable and therefore

commonly used in healthcare [14].

In this problem domain, Convolutional Neural Networks (CNNs) are the most frequently used

ML architectures, due to their ability to extract discriminative features from image data [39, 40,

41, 42]. However, the development of such systems is often limited by the scarcity of available

labeled data for the training of the ML models. To mitigate this issue, in the literature, transfer

learning [43, 44] and generative data augmentation approaches [45, 46] have been proposed.

Classification approaches. One commonly used ML approach in US CAD systems is the direct

classification of the images collected by medical experts [47, 48]. Indeed, different studies adopted

deep learning classification approaches to identify various pathologies such as tumors in breast

ultrasound [49, 50, 51], liver pathologies [52, 53], thyroid nodules [54, 55], and others [41].

Segmentation and detection approaches. Detection and segmentation techniques designed to

extract Regions of Interest (ROI) in US images are also common. For example, one solution extracts

a ROI of the femoral cartilage from US images using segmentation [56]. Other approaches rely on

object detection architectures to detect multiple ROIs within a US image for example to detect and

classify breast lesions [57] or to detect different types of diseases in several organs [58]. Another

example is SonoNet [59], a real-time detection network that identifies fetal standard scan planes
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in ultrasound 2D images. A method combining segmentation and classification has been proposed

for rheumatoid arthritis [60]. Specifically, the work aims at segmenting the synovial region in US

images of metacarpophalangeal and proximal interphalangeal joints. The objective is to classify the

grade of fluid expansion in the synovial region.

Multi-task learning approaches. Previous works have explored the multi-task combination of

classification and detection for non-US medical images [61, 62, 63, 64, 65]. A few contributions

exploring multi-task learning on US images has also been proposed. Gong et al. propose an

approach for multi-task localization of the thyroid gland and the detection of nodules within that

region, using a shared backbone network which is divided into two different decoders for the two

tasks [66]. Zhang et al. adopt a multi-task learning algorithm to segment and classify cancer in

Breast US images. They propose to use DenseNet121 as backbone, followed by a decoder branch

with layers connected by attention-gated (AG) units to segment the images [67]. The second branch

performs a classification task that takes in input the features extracted by the encoder. We are not

aware of multi-task learning algorithms adopted to address the problem of joint recess distension

detection, and more generally we found no prior works proposing multi-task networks to analyze

muskoskeletal US images.

6.2. Classification and detection of joint recess distension

US images are commonly used for joint assessment and detection of joint recess distension in

hemofilic patients. For this task, HEAD-US [7] is a standardized protocol to support physicians in

acquiring US images of commonly affected joints and formulating a diagnosis.

Different solutions have been proposed in the literature to automatically detect and classify joint

recess distension. For instance, a CNN-based method has been proposed to perform segmentation

and classification of the Bicipital Peritendinous Effusions on the shoulder joint [27]. Specifically,

a VGG-16 [40] network is used for feature extraction, and a second CNN is used to classify the

distension in three classes (i.e., mild, moderate, and severe). The authors evaluated their method

on a dataset of 3801 images, including both healthy individuals and individuals with BPE with

various severity levels, reaching an accuracy of 75%.

Another work considers the knee joints [10] and uses segmentation techniques to classify different

types of pathologies inside US images, including joint recess distension due to synovial thickening.
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The authors evaluated the method using 600 US images with 6 different classes (i.e., normal knee

joint, non-synovial thickening, synovial thickening, cyst, tumor, rheumatoid arthritis). The results

showed an accuracy of ≈ 76%.

A closely related work is ARB U-Net that, similarly to our work, extracts Sub-Quadricipital

Recess (SQR) of the knee joint from US images [12]. Specifically ARB U-Net is based on deep

segmentation, using an encoder-decoder method that identifies the exact boundaries of the SQR.

The results show a segmentation accuracy of 97.1% on a dataset of 450 US images. Differently from

that work, besides identifying the SQR area, we also classify it into distended and not distended.

Indeed, ARB U-Net only considers distended SQR US images.

There are two main differences between our paper and the three works mentioned above. First,

they all adopt a segmentation based approach that requires the exact target area to be annotated

by an expert practitioner. Our approach, instead, only requires the practitioner to annotate the

SQR bounding box, which is much simpler and fast. The second difference is that the three papers

above do not focus on patients with hemophilia.

A recent abstract paper [11] considers US images of patients with hemophila and addresses the

problem of classifying distended and not-distended knee recesses. The authors considered 179 US

images collected from pediatric patients, using a CNN to perform binary classification, reaching

an accuracy of 82%. However, that prior work does not describe the methodology used for the

classification, and it does not perform detection, differently from our proposed solutions.

A direct quantitative comparison between previous works and our paper is not possible for two

reasons. First, the datasets used for the evaluation of previous works are not public and hence

we cannot evaluate our techniques with the data used in previous works. The second reason is

that running existing solutions on our dataset is not possible neither, because the first three papers

mentioned above require the recess segmentation mask, which we do not have, while the last one

does not report sufficient details to reproduce the proposed solution.

7. Conclusion

Early detection of hemarthrosis is fundamental to reduce the risk of under and over treatment for

hemophilic patients. A Computer-Aided Diagnosis (CAD) tool that detects joint recess distension

from ultrasound (US) images can support practitioners in diagnosing hemarthrosis without the
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need for expensive and time consuming exams (like MRI). We investigate the requirements of such

a tool and we frame the problem in terms of a combination of two typical machine learning tasks:

classification and detection. Addressing this problem is particularly challenging for a number of

reasons, including that the position and the shape of the joint recess may change considerably across

different US images, and there can even be borderline cases in which the recess is only partially

distended. Finally, the datasets in this problem domain are generally small and may contain noisy

images.

This paper presents two solutions, each providing both recess detection and classification. Ex-

periments, conducted on images of the SQR (i.e., the knee joint recess), focusing on a specific US

scan (the SQR longitudinal scan) show promising results. Indeed, both solutions achieve a balanced

accuracy of approximately 0.75, a threshold value used in the literature to distinguish “useful” med-

ical tests [35]. In particular the Multi-task approach achieves a BA value of 0.78. For what concerns

the detection, the two solutions guarantee a correct detection (i.e., IoU > 0.5) in more then 82% of

the cases.

We believe that the performance of our solutions can be considerably improved in two possible

ways. First, the CAD tool could process multiple images of the same joint, possible from different

scans or from a video feed. The different results computed on the various images can then be

combined to provide a more reliable outcome. The second improvement could be the adoption of an

ensemble approach, in which a number of different models are trained and the CAD tool computes

the result as a combination of the individual results provided by each model. Beyond improving the

performance, these possible improvements have a potential important advantage: they can identify

borderline cases (e.g., when there is a disagreement in classification by two or more models, or by

processing two scans of the same knee). In these (hopefully rare) cases, the CAD tool can inform

the practitioner who can decide, for example, to use a different diagnosing tool (e.g., MRI).

As a future work we intend to apply the proposed solutions on multiple scans for multiple joints.

Actually, we are currently collecting images and videos on a total of 6 scans for the knee, the elbow,

and the ankle. Our final goal is to create a bed-side solution for early hemarthrosis diagnosis. The

idea is to enable an operator with little training (e.g., the patient or a caregiver) to acquire US

images with a portable US device. The system will support the operator during the acquisition

by identifying the relevant reference points (e.g., the patella), by guiding the operator to correctly

27



position the US probe, and by evaluating the images in real time to inform the operator that a

suitable image was collected. The US images will then be transmitted to the practitioner or even

automatically processed as a part of a screening procedure.
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