
Gonio, Aequus and Incognitus:
three spatial granularities for privacy-aware systems

Letizia Bertolaja, Dragan Ahmetovic and Sergio Mascetti
Department of Computer Science, University of Milan

{letizia.bertolaja, dragan.ahmetovic, sergio.mascetti}@unimi.it

Abstract—Many solutions proposed in the literature to enforce
privacy in presence of location information use, implicitly or ex-
plicitly, spatial granularities. However, most of the contributions
do not describe the formal and computational properties of this
tool in details. In this paper we propose three families of spatial
granularities, specifically designed for privacy-aware systems. We
mathematically characterize them and prove that all of them have
two important formal properties. Then, for each of them, we show
how to efficiently compute two fundamental operations.

I. INTRODUCTION

Spatial granularity has often been used in the literature
as formal tool to partition a spatial domain into a set of
sub-regions called “granules” [13], [2], [4]. In recent years
spatial granularities have been extensively used, implicitly or
explicitly, in several papers in the field of privacy preserva-
tion in presence of location information. A comprehensive
survey on privacy preserving techniques for private queries
is presented in [6]. In privacy techniques, a granule can model
an approximate user location, preventing the disclosure of the
exact user position, therefore guaranteeing a form of privacy.

Considering the use of spatial granularities for privacy
preservation, we can identify two different approaches in the
literature. Some papers uses granules as “minimum uncertainty
regions” (MUR) [10], in the sense that the users is known to
be located in that granule, but the position of the user within
the granules should not be disclosed [7], [9], [14], [1]. In this
case, the size of the granule represents the level of privacy
protection, in the sense that larger area correspond to higher
privacy protection. We call this the “MUR approach”. The
second approach, that we call “k-objects approach”, consists
in using granules that contain a sufficiently large number of
objects. For example, in the approaches extending the notion
of k-anonymity, the considered objects are persons, and the
intuition is that it is harder to re-identify an anonymous user
if she reports to be located in a granule where other k − 1
persons are located [8], [5], [15]. In this approach, the level of
privacy depends on the number of objects in the reported area
and not on the size of the disclosed granule. Finally there are
contributions in which a “mixed approach” is used in the sense
that granules both have a minimum dimension and contain a
minimum number of objects [11], [12].

A common problem in the contributions mentioned above
is that spatial granularities are used, often implicitly, as a
tool, without extensively describing their properties and basic
operations.

In this paper we provide a general definition of spatial
granularities and we identify two basic operations and two

properties, “non-overlapping” and “space-covering”, that are
particular relevant when using spatial granularities as a tool
to protect privacy. We also introduce the concept of “family
of granularities”, representing set of granularities with similar
characteristics but different size of the granules. The main
contribution of this paper consists in the definition of three
family of granularities, specifically designed to be used in
privacy preserving applications. The first two families “Gonio”
(labeled G) and “Aequus” (labeled A) are designed for the
“MUR approach”, while the “Incognitus” (labeled I) family of
granularities is designed for the “k-objects approach” and can
be easily extended to support the “mixed approach”. For each
family of granularities we show how to efficiently compute
the two basic operations and we prove that they respect the
“non-overlapping” and “space-covering” properties.

II. PROBLEM FORMALIZATION

In this paper we consider the entire world as the reference
spatial domain S. We use standard latitude-longitude coordi-
nates, hence: S = (−90, 90)×[−180, 180). We define a spatial
granularity (or simply “granularity”) G as a mapping from a
subset of N to S. For each G(i) we call i an index and, if
G(i) is defined, we call G(i) a granule, denoted as g. If g is
a granule of a granularity G, we denote it with g ∈ G.

In this paper we design granularities for privacy-aware
applications and we identify two relevant properties for this
type of applications. First, privacy protection should be pro-
vided everywhere, hence we need granularities that are “space-
covering” meaning that any point of the spatial domain should
be covered by the granules, as formalized in Definition 1.

Definition 1. A granularity G is space-covering if, for every
point p ∈ S, there exists one granule g ∈ G such that p ∈ g.

The “non-overlapping” property, formalized in Defini-
tion 2, is related to the fact that it should be possible to
uniquely identify a granule covering a point in the space.
In other words, there should be no intersection between
the granules of a given granularity. The lack of the “non-
overlapping” property has been noted to negatively impact the
privacy guarantees of the “MUR approach” [3].

Definition 2. A granularity G is non-overlapping if, for every
pair of g1, g2 ∈ G, with g1 �= g2, g1 ∩ g2 = ∅

In this paper we are interested in defining families of gran-
ularities. The intuition is that all the granularities belonging
to a family share the same characteristics, but have different
“size” of the granules. Formally, a family of granularities is

2013 IEEE 14th International Conference on Mobile Data Management

978-0-7695-4973-6/13 $26.00 © 2013 IEEE

DOI 10.1109/MDM.2013.70

79

a mapping associating a granularity to an element of N that
we call “level”. Given a family of granularities F , we denote
with F l the granularity G having level l in the family F .

In the following we characterize each granularity G by
defining G(i) for each index i ∈ N and we show how to
efficiently compute this function. The “inverse” function G[p]
returns, for each p ∈ S, the index i such that p ∈ G(i).
Note that, since we consider “non-overlapping” and “space-
covering” granularities, G[p] is always defined, in the sense
that for each point p ∈ S there exists exactly one granule g
of G such that p ∈ g. Once it is known how to compute G(i)
for every index i, it is possible, in theory, to compute G[p] by
computing G(i) for each index i and choosing the one such
that p ∈ G(i). However, this is impractical and in the following
of this paper we describe how to efficiently compute G[p].

III. THE GONIO GRANULARITIES

The G granularity family partitions the spatial domain
S into rectangular granules all sharing the same angular
dimension. The level of the granularity represent the number
of granules, where G0 has only one granule which comprises
the entire spatial domain while a granularity of level l has
4l granules, organized in a grid of 2l granules along each
dimension. This is intuitively analogous to a balanced quadtree
as shown in Figure 1. In the following we will refer to this
hierarchical structure as the “granularity tree”.

Level 2
Level 1
Level 0

(a) Projection plane

Level 2

Level 1

Level 0

(b) granularity tree

Fig. 1. Different granularity levels with G granularity family on the plane
and their representation in terms of granularity tree

As shown in Figure 2, the granule with index zero has the
bottom-left corner in 90◦S, 180◦W , while the others granules
are enumerated from left to right and from bottom to top.
Since a granularity Gl has 2l granules along each dimension,
the angular size of each granule is 180◦/2l on the vertical
dimension and 360◦/2l on the horizontal dimension.

0 1

180W 90W 0 90E 180E

90N

45N

0

45S

90S

Fig. 2. G2 shown on the world

The regular structure of G granularities allows to define
the position of each granule in terms of its column Xi and
row Yi. This is an alternative format to index granules that
will be useful in the following of this presentation. Clearly,

it is possible to convert from the “single-index” format to the
“double-index” format in constant time using these formulas:

Xi = i mod 2l Yi = � i
2l
�

The inverse conversion (i.e., from 〈Xi, Yi〉) to the “single-
index” is the following:

i = Xi + 2l · Yi (1)

We now formally characterize a granularity Gl through the
specification of Gl(i) for a generic index i.

Definition 3. Let l and i be two non-negative integers. Gl(i)
is undefined for i ≥ 4l. Otherwise

Gl(i) = [minLon,maxLon)× [minLat,maxLat)

where:

minLon = Xi ·
(
360

2l

)
− 180 (2)

maxLon = (Xi + 1) ·
(
360

2l

)
− 180 (3)

minLat = Yi ·
(
180

2l

)
− 90 (4)

maxLat = (Yi + 1) ·
(
180

2l

)
− 90 (5)

Note that, in order to guarantee the “space-covering” and
“non-overlapping’ properties, Definition 3 specifies that any
point on the minimum coordinates (left-bottom of the granule)
is part of the granule, while any point on the maximum
coordinates (right-top of the granule) is not part of the granule.

We now show how to compute Gl[p] in constant time. That
is, how to find the index i of the granule containing the point
p (expressed in the 〈lat, lon〉 format). The column and row
positions are computed as the proportion of longitude and
latitude (respectively) with respect to the size of the horizontal
and vertical domain (respectively). Formally:

Xi =

⌊
2l · (lon+ 180)

360

⌋
(6)

Yi =

⌊
2l · (lat+ 90)

180

⌋
(7)

Consequently the Gl[p] can be defined as follows:

Gl[p] =

⌊
2l · (lon+ 180)

360

⌋
+ 2l ·

⌊
2l · (lat+ 90)

180

⌋
(8)

Given the above definitions, the functions Gl(i) and Gl[p]
can be clearly computed in constant time.

It is also easily seen that G granularities are “space-filling”
and “non-overlapping”, as shown in Properties 1 and 2.

Property 1. For every level l, Gl is space-covering.

Proof: By Definition 1, we need to prove that index
i =Gl[p] is defined, for any l ∈ N and for any p =

80

〈lat, lon〉 ∈ S. Since lon ∈ [−180, 180), by Equation 6,
Xi ∈ [0, 2l) = [0, 2l − 1]. Since lat ∈ (−90, 90), by
Equation 7, Yi ∈ [0, 2l) = [0, 2l − 1]. Consequently, by
Equation 1, i ∈ [0, 4l). By Definition 3, Gl(i) is defined.

Property 2. For any level l, Gl is non-overlapping.

Proof: By Definition 2, we need to prove that, for any
level l, given i, j ∈ [0, 4l), with i �= j, Gl(i)∩Gl(j) = ∅. Since
i �= j, then Xi �= Xj or Yi �= Yj or both. We now show that
if Xi �= Xj then Gl(i)∩Gl(j) = ∅. The proof is analogous for
the case Yi �= Yj . Without loss of generality, let Xi < Xj . By
Definition 3, maxLon of Gl(i) is less than or equal to minLon
of Gl(j) and hence, by Definition 3, Gl(i)∩Gl(j) = ∅.

IV. THE AEQUUS GRANULARITIES

As specified in Section III, the granules of a G granularity
have the same angular dimension. Thus, granules at different
latitudes covers areas of different size. Consider Example 1.

Example 1. We consider two granules of G16, one located
in Nairobi, Kenya (−1.2877, 36.8372) and the other in Reyk-
javik, Iceland (64.1324,−21.8934). The granule positioned in
Nairobi has an area more than two times the area of the
granule calculated in Reykjavik, as shown in Figure 3.

(a) Nairobi-186314.2m2 (b) Reykjavik-81281.7m2

Fig. 3. Example of granules of G16 with different areas. Images retrieved
on Feb 15, 2013 from http://maps.google.com

Different dimensions of the granules are undesirable in
some applications. For example, in the “MUR approach” to
privacy preservation, a G granularity yields different level of
privacy in different regions of the world. In this section we
present the A granularities, an extension of G granularities,
with the following property: all granules of Al have the same
area, independently from their latitude.

Technically, A granularities are specified like G granulari-
ties; the only difference is in the computation of the horizontal
boundaries of the granules. To understand the intuition behind
our solution, we suggest to think about a G granularity as a
set of horizontal stripes that are vertically “cut” to create the
granules. In this view, each stripe is divided into the same
number of granules all having the same width. Since we are
considering Earth as our reference space, these “stripes” are
actually spherical segments1.

In a G granularity the spherical segments have the same
angular height, so they appear as having the same area in
the Equirectangular projection, but they actually have different

1Here and in the following we approximate Earth with a sphere.

areas (see Figure 4(a)). This clearly leads the granules to have
different areas. Vice versa, we define A granularities with
spherical segments having different angular height but with
the same area (see Figure 4(b)). Consequently, the granules
result to have the same size, as we will prove.

(a) Spherical segments in G3 (b) Spherical segments in A3

Fig. 4. Intuitive view of G e A granularities

We now define the family of A granularities by specifying
Al(i) for a generic index i.

Definition 4. Let l and i be two non-negative integers. A(i)
is undefined for i ≥ 4l. Otherwise

Al(i) = [minLon,maxLon)× [minLat,maxLat)

where minLon and maxLon are defined as in Equations 2
and 3 and:

minLat = arcsin

(
1− 2Yi − 2

2l

)
(9)

maxLat = arcsin

(
1− 2

Yi

2l

)
(10)

To understand the idea behind the above definition, we first
recall that the area of a spherical segment with height h is equal
to 2πRh where R is the radius of the sphere. Using the above
definitions of minLat and maxLat, the height of a spherical
segment containing a generic granule Al(i) is equal to

h = R · [sin(maxLat)− sin(minLat)] (11)

= R ·
[
1− 2 · Yi

2l
−

(
1− 2 · Yi

2l
− 2

2l

)]
=

2R
2l

(12)

This spherical segment has consequently an area Aseg that is

independent from i and that is actually equal to Aseg = 4πR2

2l
.

Property 3 follows from the above results and it shows that
all granules in a given granularity Al have the same area.

Property 3. Let G be the granularity Al. Then each granule
g of G has an area equal to:

Aseg

2l
=

4πR2

4l

Example 2. Any granule of A12 has an area of about 30km2,
while granules of A16 have an area of about 0.12km2. Indeed,
compare Figure 3 with Figure 5 that shows two granules of
A16 in Nairobi, Kenya and Reykjavik, Iceland, respectively.
Differently from what observed in Example 1, in this case the
two granules have the same area.

The Al[p] operation (for a given point p = 〈lat, lon〉) is
analogous to the same operation for G granularities, with the

81

(a) Nairobi, Kenya (b) Reykjavik, Iceland

Fig. 5. Example of granules of A16 with same areas. Images retrieved on
Feb 15, 2013 from http://maps.google.com

only difference in the computation of Yi that is defined as:

Yi =

⌊
2l · (1− sin (lat))

2

⌋

Consequently:

Al[p] =

⌊
2l · (lon+ 180)

360

⌋
+ 2l ·

⌊
2l · (1− sin (lat))

2

⌋

Similarly to G granularities, also A granularities are
“space-filling” and “non-overlapping”. Proofs are analogous
to the case of G and are omitted.

V. THE INCOGNITUS GRANULARITIES

G and A guarantee that, given a granularity, its granules
have the same size (in terms of angular dimension or actual
area). In this section we tackle the problem of granularity
specification from a different point of view: each granule
should contain at least a given number of objects that can
represents persons, points of interests, etc. The level l of the
granularity determines the minimum quantity of objects in
each granule. In Section V-A we characterize this family of
granularities, while in Section V-B we show how to efficiently
compute the Il(i) and Il[p] operations.

A. Specification of I granularities

A granularity Il is composed by a combination of granules
of A granularities at different levels. Intuitively, in the regions
of the world where the density of objects is higher, I granules
are smaller, which means that they correspond to granules
of a granularity of A with high level. Vice versa, where
the density is low, it is necessary to aggregate the granules,
so that the result contains at least l objects. This form of
aggregation is achieved by using granules of A with lower
level. For example, consider Figure 6 showing a I granularity
and the corresponding unbalanced quadtree structure. Each
granule corresponds to a leaf of the tree and smaller granules
correspond to leaf farther from the root of the tree.

The specification of a family of I granularities depends on
a given A granularity with level m whose granules represent
the smallest granules of all the granularities of I . Indeed, the
area of the smallest granules also guarantees a MUR constraint
for the I granularities. A “mixed approach” extension of the
I granularities is easily obtained by enforcing, not only the
level l of the granularity, but also the level m of the underlying
A granularity. The choice of Am also affects the indexes of

Density
high low

Fig. 6. The subdivision of the space in I according to objects density and
the corresponding unbalanced quadtree

I granularities. Indeed, as shown in Figure 7, when granules
are aggregated, the index of the “aggregated granule” is the
smallest among the indexes of Am granules composing it.

(a) A3 (b) I based on A3

Fig. 7. Example of indexing with I

The specification of I granularities also depends on a
function c() that counts how many objects are contained in
a given area. Since we want to define granularities having at
least l objects in each granule, a granularity Il is undefined if
l < c(S). In other words, we disregard the case of granularities
in which the expected number of objects in each granule is
larger than the number of objects in the entire world.

We now mathematically characterize Il by specifying Il(i)
for a given integer i. Lets first define the “good ancestor”.
Intuitively, a granule g′ is a good ancestor of another granule
g ∈Am, if g′ is an ancestor of g in the corresponding A
granularity tree and if g and each of its siblings in the
granularity tree contain at least l objects. Formally:

Definition 5. Given g =Am(i) a granule g′ =An(j) for n > 0
is a “good ancestor” of g if
(a) g ⊆ g′ and
(b) given gf ∈ An−1 such that gf ⊃ g′, ∀gs ∈ An such that
gs ⊂ gf , it holds that c(gs) ≥ l.

Example 3. Let’s consider granularity A2 and the granule
g shown in Figure 8(a). The number of elements calculated
by c() for each granule is specified inside the granules. Let
l = 5 be the number of objects required inside each granule.
While the granule g satisfies the constraint c(g) ≥ l, one of its
siblings does not, as it contains 3 objects only. Consequently,
g is not a good ancestor of itself. Instead, if we consider
granularity A1, the ancestor of g is the granule denoted by
g′ in Figure 8(b). In this case g′ and all its siblings contain
more than l objects and hence g′ is a good ancestor of g.

Note that a granule g =Am(i) can have more than one

82

g

6 5 4 10

8 7 2 11

11 4 6 9

7 9 8 3
g

6 5 4 10

8 7 2 11

11 4 6 9

7 9 8 3

(a) g is not a good an-
cestor of itself

g

26

6 9

8 3g'

27

31 26

� �

��

(b) g′ is a good ances-
tor of g

Fig. 8. Example of good ancestor with m = 2 and l = 5

good ancestor. We are interested in the smallest one (i.e.,
the one with lower level of granularity), called “min-good
ancestor” and formally defined as follows.

Definition 6. Given g =Am(i), the min-good ancestor of g
is S if g does not have any good ancestor, otherwise it is the
smallest one among all the good ancestors of g.

We are now ready to define Il(i).
Definition 7. Given m ∈ N, a count function c() and l ∈ N, let
i be an integer value and g the min-good ancestor of Am(i).
Then, Il(i) is equal to⎧⎨

⎩
undefined if i ≥ 4m

undefined if i �= minj∈N{j|Im(j) ⊆ g}
g otherwise

The first condition of Definition 7 states that, since we use
indexes of Am to index the granules of Il, if i ≥ 4m then Il(i)
is undefined. The second condition is due to the fact that not
all granules are defined for indexes in [0, 4m). For example,
in Figure 7, Il(21) is not defined because the granule of I
containing A3(21) has index 4. If the first two conditions are
not met, then Il(i) is equal to the min-good ancestor Am(i).

We now show that I is both space-covering and non-
overlapping.

Property 4. For a level l ≤ c(S), Il is space-covering.

Proof: We show how to construct, for every p ∈ S
the granule g′ =Il[p]. By Property 1, granule g =Am[p] is
defined. By Definition 6, the min-good ancestor g′ of g exists.
By Definition 5 and 6, p ∈ g′. Finally, since by Definition 7
g′ ∈ Il, then Il[p] = g′.

Property 5. For a level l ≤ c(S), Il is non-overlapping.

Proof: Let g1, g2 ∈ Il with g1 �= g2. We now prove that
g1 ∩ g2 = ∅. Since g1, g2 ∈ Il, by Definition 7 ∃n1, n2, j1, j2
such that g1 =An1(j1), g2 =An2(j2). If n1 = n2, then thesis
follows from Property 2. Otherwise, without loss of generality,
let n1 < n2 and let g′ be the ancestor of g1 at level n2 i.e.,
g′ ∈ An2 and g1 ⊂ g′. If g′ �= g2 then, from Property 2 it
follows that g′ ∪ g2 = ∅, hence g1 ∪ g2 = ∅. The other case,
namely g′ �= g2 is impossible. We prove this by contradiction.
Let g′ = g2. Then g′ is the min-good ancestor of Am(j2), but
this is absurd, since g′ ⊃ g1 and g1 is min-good ancestor of
Am(j1).

The I granularities are defined with the objective of
supporting privacy preserving solutions adopting a “k-object

approach”. However this family of granularities can be easily
extended to support the “mixed approach”. The intuition is to
have two levels characterizing each granularity, one represents
the minimum number of objects within each granule, the other
the minimum “size” of the granule, expressed in terms of the
level of A. To extend the formalism, it is sufficient to specify
that a min-good ancestor must be at least at a given level
of A. As will be clear in the following, the extension of the
algorithmic part is straightforward as well, and it is omitted
here.

B. Computation of Il(i) and Il[p]
The computation of Il(i) is presented in Algo-

rithm 1. This computation relies on the recursive pro-
cedure minGoodAncestor that, starting from the granule
Am(i), traverses the granularity tree towards the root, until
it finds the min-good ancestor of Am(i). The output of the
minGoodAncestor is a pair of integers, one representing the
level of the A granularity, the other the index. Lines 1 and
4 check the validity of the index, according to Definition 7.
If the index is not valid, null is returned, meaning that the
granule is undefined. Otherwise the algorithm returns the min-
good ancestor of Am(i). Note that Line 3 can be computed in
constant time as follows:

im = 2m−n(j mod 2n) + 2m · 2m−n ·
⌊
j

2n

⌋
(13)

Algorithm 1 Il(i)
Input: The level l of the granularity, the index i of the granule,
the level m of the bottom granularity, the function c().
Output: null if Il(i) is undefined, the region covered by Il(i),
otherwise.
Procedure:

1: if (i ≥ 4m) return null
2: 〈j, n〉 = minGoodAncestor(i,m, l, c())
3: im = min{i′ ∈ N|Am(i′) ⊂ An(j)}
4: if (i �= im) return null {undefined granule}
5: else return An(j);

The min-good ancestor is computed recursively (see Proce-
dure 2). At each recursion step, the algorithm moves one level
up in the granularity tree (Line 8). There are two termination
conditions. First, when we the procedure reaches level 0, which
means that S is returned (Line 1). Second, when the the
procedure finds the min-good ancestor (Line 5).

We now show how it is possible to compute the “parent” of
a given granule g =An(i), i.e., how to compute gp =An−1(j)
such that g ⊂ gp (Line 2). The idea is to first compute the
granule gm =Am(i). Let X = i mod 2m be the column
number of gm. Then, the column number Xp of gp is

Xp =

⌊
X

2m−n+1

⌋

Analogously, the row number Y of gm is � i
2m � and the row

number Yp of gp is:

Yp =

⌊
Y

2m−n+1

⌋

83

Procedure 2 minGoodAncestor(i, n, l, c)

Input: the index i of the granule, the level n of A, the level
l of I and function c().
Output: a pair 〈j, n〉 where j is an index and n the level of
A.
Procedure:

1: if (n = 0) return S {entire world}
2: p ∈ N s.t. An(j) ⊂ An−1(p) {parent of j}
3: C = {gc ∈ An |gc ⊂ An−1(p))} {children of j}
4: if (∀gc ∈ C c(gc) ≥ l) then
5: return 〈j, h〉 {min-good ancestor is found}
6: else
7: {recursively move up in the tree}
8: return minGoodAncestor(p, n− 1, l, c())
9: end if

Consequently,

j =

⌊
i mod 2m

2m−n+1

⌋
+ 2n−1

⌊
� i
2m �

2m−n+1

⌋

Analogously to the “parent” (Line 2), it is possible to
compute set C (Line 3) in constant time as follows:

C = {j, j + 2m−n, j + 22m−n, j + 2m−n + 22m−n}

Overall, each execution of the minGoodAncestor takes
constant time and this procedure is run at most m times (since
m is the height of the granularity tree). Consequently, the worst
case time complexity of Algorithm 1 is O(m).

Algorithm 3 Il[p]
Input: The level l of the granularity, a point p, the level m of
the bottom granularity, the function c().
Output: the index i such that p ∈ Il(i).
Procedure:

1: i =Am[p]
2: 〈j, n〉 = minGoodAncestor(i,m, l, c());
3: return min{i′ ∈ N| Am(i′) ⊂ An(j)}

Once the minGoodAncestor procedure is defined, it is
simple to show how to compute Il[p] for a give point p. Indeed,
as shown in Algorithm 3, it is sufficient to compute the granule
g of Am that contains p (as explained in Section IV) and, after
running minGoodAncestor, it is only necessary to compute
the smallest index of granules of Am composing An (this can
be obtained in constant time with Equation 13). Consequently,
the worst case time complexity of Algorithm 3 is O(m).

Since both Il(i) and Il[p] can be computed in time O(m)
our solution if efficient also for fine underlying granularities
Am. On the other hand, it should be observed that Incognitus
is not optimal in the sense that granules of a granularity Il can
actually contain more than l objects. For example, assuming a
uniform distribution of the objects, in the worst case we can
have l−1 objects in each granule of Am, which means that the
granules of Il contain 4(l − 1) objects. We leave as a future
work the empirical analysis of the average number of objects
in each granule of Il.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we described the formal and computational
characteristics of three families of spatial granularities specif-
ically designed for privacy-aware systems. As a future work,
we intend to investigate new families of spatial granularities,
and to show how to compute other basic operations. Most
importantly, we intend to extend this line of research to
spatio-temporal granularities that presents new theoretical and
computational challenges.

ACKNOWLEDGMENT

The authors would like to thank Claudio Bettini for prelim-
inary discussion about this paper. This work was partially sup-
ported by Italian MIUR under grants FIRB-RBFR081L58 002.

REFERENCES

[1] Osman Abul, Francesco Bonchi, and Mirco Nanni. Never walk alone:
Uncertainty for anonymity in moving objects databases. In 24th ICDE
Int. Conf. on Data Engineering. IEEE, 2008.

[2] Thomas Bittner and Barry Smith. A taxonomy of granular partitions.
In Spatial Information Theory, L.N.C.S. Springer, 2001.

[3] Maria Luisa Damiani, Elisa Bertino, and Claudio Silvestri. The probe
framework for the personalized cloaking of private locations. Trans. on
Data Privacy, 2010.

[4] Iginia De Fent, Donatella Gubiani, and Angelo Montanari. Granular
geograph: a multi-granular conceptual model for spatial data. In
Symposium on Advanced Database Systems, 2005.

[5] Bugra Gedik and Ling Liu. Location privacy in mobile systems: A
personalized anonymization model. In Proc. of 25th ICDCS Int. Conf.
on Distributed Computing Systems, 2005.

[6] Gabriel Ghinita. Private queries and trajectory anonymization: a dual
perspective on location privacy. Tran. on Data Privacy, 2009.

[7] Gabriel Ghinita, Maria Luisa Damiani, Claudio Silvestri, and Elisa
Bertino. Preventing velocity-based linkage attacks in location-aware
applications. In Proc. of the 17th SIGSPATIAL Int. Conf. on Advances
in Geographic Information Systems. ACM, 2009.

[8] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-
based services through spatial and temporal cloaking. In Proc. of the
1st MobiSys Int. Conf. on Mobile Systems, Applications and Services.
The USENIX Association, 2003.

[9] Sergio Mascetti, Claudio Bettini, Dario Freni, X. Sean Wang, and Sushil
Jajodia. Privacy-aware proximity based services. In Proc. of the 10th
Int. Conf. on Mobile Data Management, MDM. IEEE, 2009.

[10] Sergio Mascetti, Dario Freni, Claudio Bettini, X. Sean Wang, and Sushil
Jajodia. Privacy in geo-social networks: proximity notification with
untrusted service providers and curious buddies. VLDB Journal, 2011.

[11] Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. The new
casper: Query processing for location services without compromising
privacy. In Proc. of the 32nd VLDB international conference on Very
large data bases. VLDB Endowment, 2006.

[12] Anna Monreale, Gennady Andrienko, Natalia Andrienko, Fosca Gian-
notti, Dino Pedreschi, Salvatore Rinzivillo, and Stefan Wrobel. Move-
ment data anonymity through generalization. Transactions on Data
Privacy, 2010.

[13] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. Efficient
olap operations in spatial data warehouses. In Proc. of the 7th SSTD Int.
Symposium on Advances in Spatial and Temporal Databases. Springer-
Verlag, 2001.

[14] Laurynas Šikšnys, Jeppe Rishede Thomsen, Simonas Šaltenis, and
Man Lung Yiu. Private and flexible proximity detection in mobile
social networks. In Proc. of the 11th MDM Int. Conf. on Mobile Data
Management. IEEE, 2010.

[15] Roman Yarovoy and Francesco Bonchi. Anonymizing moving objects:
how to hide a MOB in a crowd? In Proc. of the 12th Int. Conf. on
Extending Database Technology. ACM, 2009.

84

