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ABSTRACT 
We present ReCog, a mobile app that enables blind users to 
recognize objects by training a deep network with their own 
photos of such objects. This functionality is useful to dif-
ferentiate personal objects, which cannot be recognized with 
pre-trained recognizers and may lack distinguishing tactile 
features. To ensure that the objects are well-framed in the 
captured photos, ReCog integrates a camera-aiming guidance 
that tracks target objects and instructs the user through verbal 
and sonifcation feedback to appropriately frame them. 

We report a two-session study with 10 blind participants using 
ReCog for object training and recognition, with and without 
guidance. We show that ReCog enables blind users to train and 
recognize their personal objects, and that camera-aiming guid-
ance helps novice users to increase their confdence, achieve 
better accuracy, and learn strategies to capture better photos. 

Author Keywords 
Visual impairment; object recognition; photography guidance. 

CCS Concepts 
•Social and professional topics → Assistive technologies;
•Computing methodologies → Mixed / augmented reality;
•Human-centered computing → Auditory feedback;

INTRODUCTION 
To support blind users in recognizing objects, novel assis-
tive technologies use machine learning and computer vision, 
trained on large image datasets. Mobile applications such as 
Microsoft Seeing AI [24] are trained to recognize common 
objects (e.g., car, cup) or commercial products (e.g., Coke, 
Pepsi). However, for personal objects such as clothing, hand-
made items, local products, or pictures of loved ones, a general 
purpose recognizer cannot be used. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for components of this work owned by others than ACM 
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, 
to post on servers or to redistribute to lists, requires prior specifc permission and/or a 
fee. Request permissions from permissions@acm.org.
CHI’20, April 25–30, 2020, Honolulu, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6708-0/20/04. . . $15.00.
http://dx.doi.org/10.1145/3313831.3376143 

(a) Main screen (b) Label input (c) Photo taking

Figure 1: ReCog app screens 

To address this issue, we present ReCog, a mobile app that 
enables blind users to capture photos of their personal objects, 
and use them to train a deep neural network that can recognize 
such objects (see Figure 1). Focusing the camera to capture 
photos is diffcult for blind people [15], and results in photos 
of inconsistent quality. Instead, consistent photos are desirable 
because they improve recognition accuracy [17]. Thus, besides 
manual photo capturing, ReCog also provides camera-aiming 
guidance to track the objects in the camera frame, using vocal 
feedback and sonifcation to guide the user to position the 
camera with respect to the object. 

We evaluated the system through a study with 10 blind partic-
ipants across two sessions. The frst session explored photo 
capturing with and without guidance in a controlled scenario, 
and collected participants’ subjective feedback. The second 
session studied in-the-wild usage of the system during the 
following 3 days. A fnal questionnaire assessed changes in 
the participants’ opinions of the system after prolonged usage. 
The participants perceived the system to be usable, and were 
able to use it autonomously. Most of them had limited knowl-
edge on how to aim a camera, so they preferred using guidance 
to capture photos, which also improved the image quality and 
recognition accuracy. After prolonged use, participants ac-
quired confdence in their photo capturing skills and shifted 
away from guidance. However, this interaction modality was 
still considered better for novice users, and during the training 
task to ensure that the resulting recognition model is reliable. 
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RELATED WORK 
Blind individuals resort to various strategies to recognize ob-
jects that are not easy to identify without sight. Besides mem-
orizing where the objects are placed, which is cognitively 
demanding, it is possible to use braille labels [12]. These 
are time-consuming to emboss, especially for a large number 
of objects, and they are useful only to profcient braille read-
ers, which are a minority [26]. Electronic markers, such as 
Near-Field Communication (NFC) tags [28], barcodes [34] 
which are available on most products, or inexpensive visual 
labels [14, 30] are also used. These can be detected with a 
smartphone, but may be hard to apply and locate on an object. 

Machine learning approaches, trained on photos of objects to 
recognize, do not require special markings. General purpose 
recognizers trained on large datasets can recognize thousands 
of different objects [9, 24]. However, systems using generic 
training data can only provide high-level object identifca-
tion (e.g., a bottle). Instead, more detailed descriptions (e.g., 
mug with fowers) or intra-class discrimination (e.g., Coke vs. 
Pepsi), may be needed for blind users. Furthermore, generic 
recognizers cannot detect objects for which they have not been 
trained or which do not belong to the public domain, such as 
handmade or personalized objects, local products, or clothes. 

Human powered approaches submit photos captured by blind 
users to a crowdsourcing platform [6] or connect users to 
sighted assistants [4], which can provide fne-grained recogni-
tion without prior labeling or training. However, the response 
time and quality depend on connection quality, worker avail-
ability and knowledge. Crowdsourcing services also have a 
cost and raise privacy concerns when personal objects are in-
volved, which may not be solved by masking image parts [19]. 

Personal object recognition [17, 2] is a novel paradigm, that 
enables blind users to recognize their personal objects, us-
ing photos of such objects, captured by the users themselves, 
to train their own recognizers and perform object recogni-
tion. This way it is possible to distinguish between similar 
objects that cannot be recognized with general recognizers. 
We designed and implemented ReCog, the frst smartphone-
based personal object recognizer that guides blind users to 
autonomously capture photos of their objects of interest and 
train a personalized deep network with these photos. 

Object recognition is more accurate when training and recog-
nition photos are consistent [17]. However, capturing well-
framed photos is challenging for blind people [5]. Prior works 
provide camera aiming trough sonifcation [36], verbal [38] 
or vibro-haptic cues [3], using computer vision [15] or crowd-
sourcing [6] to locate the target. These approaches focus on 
photo composition [3, 15, 38] or only address object centering 
but not proximity [36], without specifcally aiming for captur-
ing well framed photos for object recognition. Indeed, existing 
object recognizers do not provide guidance [2], and therefore 
depend on user’s photo capturing ability. Hand detection to 
support camera aiming for object recognition has been pro-
posed [23], but still heavily relies on user’s ability. Instead, 
our system improves object framing through a robust guid-
ance based on visual-inertial odometry [16] which conveys the 
distance and direction of the camera from the target object. 

Figure 2: Overview of Personal Object Recognizer (ReCog) 

PERSONAL OBJECT RECOGNIZER 
ReCog enables blind users to identify and differentiate be-
tween their personal objects, which often lack distinguishing 
tactile features, such as clothing, handmade items, local prod-
ucts, or pictures of loved ones. The system is frst trained by 
the users with their own photos and labels of their personal 
objects, and it is then able to recognize such objects. The sys-
tem (see Figure 2) consists in the ReCog mobile app, which 
runs on the user’s smartphone and provides photo capturing 
functionalities, and the ReCog recognition server, which hosts 
the recognition model and performs training and recognition. 

ReCog Mobile App 
The app exposes 2 main activities: Training and Recognition. 
The Training activity is accessed from the main application 
view by selecting “Train a new object” (see Figure 1a). In the 
current version of the app the user is prompted to manually 
provide a label for the new object (see Figure 1b). This ap-
proach is useful when the object label is known, or in presence 
of sighted assistants that can provide the initial label. If the 
user cannot identify the object in the frst place, other labelling 
methods, such as friendsourcing [27], or crowdsourcing [35] 
will be included as a future work. 

If manual photo capturing is selected, the user can capture 
photos of an object by tapping on the touchscreen. ReCog also 
provides camera-aiming guidance (see Figure 1c), which is 
described in the following section. In both cases, the user is 
advised to use a plain background surface to improve recogni-
tion accuracy. Once enough photos of the object are captured 
(default 10), the app instructs the user to turn the object to the 
other side and capture additional photos or to fnish the photo 
capturing if all sides of the object were already captured. The 
ReCog server starts the recognition model training once the 
photo capturing is fnished and notifes the mobile app through 
push notifcations when the training is completed. 

Selecting “Recognize” in the main application view (see Fig-
ure 1a) starts the Recognition procedure. The photo capturing 
interface is the same one used for the training, and it can also 
be performed on single or multiple images (default 5), as de-
fned in the application settings. Recognizing an object on 
multiple images aims to increase the robustness of the recogni-
tion, but it also entails a greater workload from the user. Once 
captured, the photos are submitted to the ReCog server for 
recognition. If the object is recognized with a high confdence, 
the object label is read and the user can recognize a new object. 



ReCog Recognition Server 
The ReCog recognition server uses a state-of-the-art deep 
convolutional neural network (CNN) algorithm to train the 
recognition models using photos captured by the users, and to 
recognize the captured photos with the trained models. The 
presented approach is not novel, but it is a central part of our 
system and therefore we describe it in details. Deep CNN 
architectures [22] are structured as a cascade of layers, with 
bottom layers applying the convolution operation on the input 
image to extract low-level local visual features, while top 
layers connect these features to characterize different objects. 
We used the Inception-v3 architecture to balance between the 
recognition accuracy and speed [31], implemented on top of 
the Tensorfow machine learning framework [1]. 

While deep CNN are currently the state-of-the-art for accurate 
object recognition, they generally need to be trained on large 
images datasets. However, it is unfeasible for blind users 
to capture hundreds of photos for each object for training 
purposes. We address this issue in two ways: 1) We artifcially 
modify existing images, changing object position, rotation, 
size, luminosity or randomly erasing image portions [39]. This 
procedure signifcantly increases the recognition accuracy, but 
it also increases the training time. 2) It is possible to reduce 
training time by training only the top layer with the actual 
dataset, while low layers, which recognize generalizable image 
features, are reused from a pre-trained network. This process, 
called transfer learning [11], achieves reasonable recognition 
accuracy and the training requires only a fraction of the time 
needed for full network training. 

To achieve high accuracy, but still enable the recognition as 
soon as possible, we train two different recognition models. 
The frst model (quick model) trained through transfer learn-
ing for 100 epochs (training iterations), provides object recog-
nition capabilities after only about 10 min. of training. The 
second model (full model) trains the full network for 1000 
epochs, which results in a training time of about 3 hours, dur-
ing which the recognition accuracy gradually improves until 
the accuracy is saturated. For both models we use Adam [20] 
optimization algorithm, which is characterized by quick and 
robust learning. The number of epochs has been defned em-
pirically to balance between accuracy and training speed. The 
batch size, that is the number of training examples used in each 
iteration, is set to 32 for best performance. The learning rate, 
which defnes how fast the network learns from the training 
data, is initially set to 2× 10−4 in order to yield meaningful 
results quickly, and it is gradually decreased during training to 
allow fnely grained improvements. These parameters are also 
selected empirically, based on prior experience with our data. 

CAMERA-AIMING GUIDANCE 
We designed our guidance approach to ensure that the target 
object is consistently well framed in the captured photos. This 
goal was informed by prior work which show that consistent 
object framing in training and testing photos improves recogni-
tion accuracy [17]. To achieve this we track the object within 
the camera frame, we measure its framing quality through two 
novel metrics, and we use those metrics to instruct the user to 
correctly position the camera with respect to the object. 

(a) Identifying object position (b) Estimating object size 

Figure 3: Photo capturing with camera-aiming guidance 

Object Tracking and Pose Estimation 
To calculate and track the object position we use ARKit1, an 
iOS framework for positional tracking and scene understand-
ing using video camera stream and inertial measurement unit 
(IMU) sensor values. ARKit uses Simultaneous Localization 
and Mapping (SLAM), an incremental, online Structure-from-
Motion algorithm to map coordinates of the objects in the 
camera frame to real world coordinates. SLAM concurrently 
estimates the camera orientation and location in 3D and con-
structs a sparse 3D point cloud of the environment [8]. For 
this, SLAM relies on an initialization step which is critical for 
the stability of the object tracking. The initialization step is 
best carried out with a purely translational motion, parallel to 
the scene [25]. The user is instructed with an audio message 
to face the smartphone camera towards the target object and 
move the phone from left to right until an audio signal is heard. 

After the initialization, the system has to identify the position 
of the target object in 3D. First, the system asks the user to 
slowly move the phone towards the object, while touching the 
object with the other hand (see Figure 3). During this motion, 
the system estimates the phone trajectory in 3D. The trajec-
tory, which is ftted to a straight line, is tested for intersection 
against the point cloud of the target object. The intersection 
closest to the user is recorded as the point MMM∗. Alternatively, 
the user can also touch the object with the phone and tap the 
screen, as in EasySnap in object mode [15]. 

Then, the system determines the approximate size of the object 
similarly to [18, 33]. Given the assumption that most common 
objects have a convex shape, the system starts by inserting 
the triangle described by the point MMM∗ plus its two closest 
points in the point cloud to the object point set M . Then, the 
closest points to M from the point cloud are incrementally 
considered by forming a triangle and testing the resulting mesh 
for convexity. If convexity is maintained, the point is added 
to M and the process continues until no more points can be 
added to the set. 

Object Framing Quality Metrics 
In contrast with prior work, our approach not only considers 
the position of the object within the camera frame but also 
its proximity. To measure the framing quality we defne two 
novel camera pose quality metrics: 1) the proximity score, and 
2) the center offset score. 
1https://developer.apple.com/arkit/ 
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http:proximity.To
http:purposes.We


 !
· ppp ∗ ppp j j Tt = argmin 

j kppp jkk ppp ∗ jk

 

� �
hBt wBt Dt = max , 
h w 

Left
Right

Down

Up
Closer

Farther

(a) Proximity Score (b) Center Offset Score (c) Speech feedback

Figure 4: Camera-aiming guidance 

Proximity Score 
The proximity score measures the distance between the camera 
and the object. It approaches 1 if the object’s size is close to 
the image size and it is close to 0 when the object in the image 
is too small. Formally, we consider the current image frame 
IIIt , with height h and width w. The intrinsic camera parameter 
matrix KKKt is assumed to be known and static. We estimate 
the extrinsic camera parameters PPPt = [RRRt |tttt ], where RRRt and 
tttt are respectively a rotation matrix and a translation vector. 
Each 3D point MMMi ∈ M in world coordinates is projected to a 
2D point mmmi = KKKtPPPtMMMi in camera coordinates based on [13] 
(see Figure 4a). The object’s minimum bounding rectangle 
BBtB , with height hBt and width wBt is computed from the 2D 
projected points mmmi. Then, we compute the Proximity score: 

Center Offset Score 
The center offset score measures how centered the object is 
in the camera feld of view (see Figure 4b). It is close to 1 
when the object is centered and approaches 0 when the object 
is out of the feld of view. A set m− is created considering the 
object points mmi m that lie outside of the image IIIt . Then, each 
point mmmj ∈ m−, is associated to its closest point mmm ∗j 

 inside IIIt . 
Denoting CCCt = −RRR−1 tttt t as the camera center, and considering
the vectors ppp j = CCCtmmmj, ppp ∗ j = CCCtmmm ∗ j , the Center offset score is: 

Sonifcation and Speech Feedback 
Initially we explored guidance using solely sonifcation [36] 
or verbal instructions [15], augmented to also provide dis-
tance information. Preliminary tests with 12 blind participants 
exposed a mild preference for the sonifcation modality but 
advantages of both approaches were uncovered: verbal instruc-
tions better conveyed direction, while sonifcation was able to 
convey the amount of movement needed. Thus, we combined 
the two modalities into one single interaction technique and 
tuned its sonifcation parameters and verbal instructions with 
the support of a blind accessibility expert from our group. 

Sonifcation 
This modality mimics the idea of tuning a string instrument by 
correctly aiming the camera [37]. Our system generates two 
sine wave sounds; the frst one at a fxed frequency Ft = 440Hz, 
and the second one at a variable frequency Fv, which changes 
according to Tt , Dt and a scaling parameter α = 10. �

Tt (0.5≤ Dt ≤ 0.8) Fv = Ft + α · Dt (otherwise)

As the camera points away from the object, the sound interfer-
ence causes a pulsating tone which conveys a sense of urgency. 
To maximize the effect, the sound volume is proportional to 
the pulse frequency. By adjusting the camera orientation, the 
pulse caused by the interference softly disappears as the two 
frequencies become one. 

Speech Feedback 
This mode provides verbal instructions as in prior works [3, 
38]. The system speaks "left", "right", "up", and "down" 
according to Tt and "closer" and "farther" according to Dt . 
However, "left", "right", "up", and "down" are not used for 
panning (camera translation) but for tilting (camera rotation) 
as shown in Figure 4c. To convey a greater sense of urgency, 
the voice pitch is proportional to Dt and Tt . 

Automatic Photo Collection 
Once the object is centered, that is whenever Dt and Tt are 
within predefned bounds (0.5≤ Dt ≤ 0.8, Tt = 1), the system 
automatically takes a photo. This is particularly benefcial as 
the user does not need to touch the phone for taking photos, 
which can cause unwanted blur. 

In addition to capturing the photo, the system also verifes that 
the camera position has changed with respect to previously 
captured photos. This constraint is needed to build a diversi-
fed collection of photos, in order to train a better recognizer. 
To achieve this, the system computes a number of uniformly 
distributed viewpoints on a hemisphere around the initial ob-
ject point MMM∗ . Whenever a photo is about to be taken, the 
camera position is projected onto the hemisphere and the clos-
est viewpoint is found. If the viewpoint has not been already 
recorded, the photo is taken. Otherwise, the user is prompted 
to move the camera through verbal messages and sonifcation. 

http:andtheobject.It


ID Sex Age Visual Impairment Years of experience with 
Type Onset iPhone VoiceOver Camera 

P1 M 64 Totally blind Birth 12 years 8 years 2 years 
P2 F 70 Totally blind Birth 10 years 6 years 1 year 
P3 M 70 Light percept. Birth 3 years 3 years Rarely 
P4 M 42 < 20/400 Birth 2 years 2 years 2 years 
P5 F 44 Totally blind Age 20 3 years 3 years 3 years 
P6 M 45 Totally blind Age 2 15 years 7 years 3 years 
P7 F 62 Light percept. Age 10 10 years 10 years 5 years 
P8 M 41 Light percept. Age 10 10 years 10 years 10 years 
P9 F 44 Totally blind Age 19 8 years 8 years 8 years 
P10 M 43 Totally blind Birth 10 years 8 years 10 years 

Table 1: Participant demographic data 

USER STUDY 
To assess ReCog performance and its acceptance, we con-
ducted a user study with 10 blind participants. Specifcally, we 
were interested in addressing the following research questions: 

• Does camera-aiming guidance impact object recognition? 
• What are participants’ opinions of ReCog and the guidance? 
• Do their opinions change after familiarizing with ReCog? 

The study was divided in two sessions. The frst one studied 
training and recognition activities, with and without guidance 
in a controlled setting. A follow-up questionnaire collected 
participants’ opinions of the system. The second session took 
place during the following 3 days. Participants were asked to 
autonomously train and test additional objects of their choice 
at home. A fnal questionnaire assessed how participants’ 
opinion of the system changed after prolonged use. 

Participants 
We recruited 10 participants (4 female, see Table 1). Six were 
totally blind, three had light perception, and one was legally 
blind, with residual sight insuffcient to recognize objects. 
Their average age was 52.5 (SD = 12.3). All of them have 
used iPhone for at least 2 years (M = 8.3, SD = 4.3), and had 
more than 2 years of experience with VoiceOver screenreader 
(M = 6.5, SD = 2.9). Camera expertise was not equally dis-
tributed among all participants (M = 4.41 years, SD = 3.7). In 
particular, one participant had only 1 year of camera usage 
experience, and one rarely ever used a camera. However, all 
participants had experience with at least one camera-based 
object recognition app such as SeeingAI or TapTapSee[32]. 

Apparatus and Experimental Setting 
We implemented ReCog as an iOs app. Experiments were con-
ducted on iPhone 7 devices updated to the latest iOS version 
at the time of the study (11.2.2). The recognition server was 
equipped with 128GB of DDR4 RAM, 4 NVIDIA GeForce 
GTX 1080 Ti video cards used to run the CNN training proce-
dure, and an Intel Xeon E5-2660 v3 2.60GHz CPU with 10 
cores and 20 threads used for the recognition. For the experi-
ments we used a well-lit surface covered with a plain colored 
tablecloth to limit background features that may infuence the 
recognition (See Figure 5). External objects were removed 
from the area and participants were positioned so that, while 
pointing the camera towards the object in front of them, there 
are not many features that could infuence the recognition. 

(a) PP Roast (b) Decaf (c) Candies (d) Gummies 

Figure 5: Four default objects 

Procedure 
Before the study we invited the participants to read the help 
documentation2, which describes the main functionalities and 
the interaction with the system. At the beginning of the study, 
before the frst session, participants were provided with the 
study consent form. We then conducted a tutorial that follows 
the same indications provided in the help documentation. It 
involved the training of ReCog with two objects: a t-shirt and 
a mug. These two objects were chosen because they require a 
different interaction during photo capturing. A fat object such 
as t-shirt requires the smartphone to be held horizontally, par-
allel to the surface on which the object is placed. A vertically 
standing object, such as a mug, requires the smartphone to be 
held vertically, standing on the table and parallel to the object. 

First Session 
The session was video recorded to study the behavior of the 
participants during the procedure. Participants were asked to 
take breaks when desired. The session was 150 min. long, and 
it consisted of two tasks: object training and recognition. For 
both tasks, participants were asked to capture photos of a set of 
4 predefned objects and 4 objects of their choice. All objects 
were trained and recognized with and without camera-aiming 
guidance in a counterbalanced order to offset the learning 
effects that may infuence the performance of the system and 
the participants’ perception of it. Participants with even IDs 
had camera-aiming guidance as frst condition, while others 
had it as second condition. 

Participants began the training task with a practice object 
(Chewing Gums) to verify that they were performing the pro-
cedure correctly. If any problem were noted at this stage, 
the examiners repeated the corresponding help instructions to 
make sure that the participants performed the training activity 
correctly. Afterwards, the participants were asked to train the 
system with four default objects: two coffee k-cups (Decaf 
and PP Roast), and two candy boxes (Candies and Gummies) 
(see Figure 5). These object pairs were chosen because they 
are similar in shape, and therefore hard to distinguish non-
visually. The participants were then asked to train the system 
with four of their own objects that they would want to recog-
nize with ReCog. For each object, participants were instructed 
to repeat the photo capturing for all major sides (e.g., avoiding 
short sides on fat boxes). After the training in one condition, 
the task was repeated in the remaining condition. 

2http://por.bitballoon.com/ 
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After the training, a questionnaire was administered to collect 
the participants’ demographic data and to assess their experi-
ence with the system. The questionnaire included the system 
usability scale questions [7] to measure the overall apprecia-
tion of the system, and subjective ratings regarding the system 
usage with and without guidance. Then, the participants were 
asked to perform the object recognition task in both conditions 
and in the same order as for the training task, using the same 
set of objects. For default objects, participants were asked to 
perform at least fve recognitions, for each side of the object. 
This was necessary to acquire a suffcient number of photos 
for the recognition accuracy computation. Note that for each 
recognition, fve photos were captured by default. 

Second Session 
Participants were asked to continue using the system for other 
three days, in order to study how their interaction with the 
app and their opinion of the system evolved after prolonged 
usage in a more naturalistic scenario. They were instructed to 
train up to 20 additional objects. The number of objects was 
limited due to computational constraints, to allow all users 
to access the system concurrently. Participants could train 
and test any object of their choice. However, they were no-
tifed that the experimenters would review the photos taken, 
and therefore to avoid private objects. The objects could be 
trained and tested with or without camera-aiming guidance. 
Each photo captured by the participants was associated with 
the corresponding object label and its timestamp. At the end 
of the second session, the participants were administered the 
same questionnaire as in the frst session, except for the de-
mographic part that has been already collected. This second 
questionnaire was used to compare the users opinion before 
and after acquiring experience in natural usage of the system. 

RESULTS 
We present the results of the user study and evaluation of 
ReCog. We focus in particular on six aspects: 1) analysis of 
the collected photo data, 2) evaluation of the photo quality with 
and without camera-aiming guidance, 3) object recognition 
accuracy on photos captured by participants, 4) evaluation of 
the system using the System Usability Scale, 5) evaluation of 
the camera-aiming guidance, and 6) participants’ observations. 

Photo Data Analysis 
We analyze the photos captured for training and testing. 

Training Photos. 
During Session 1, the system captures 10 training photos for 
each side of each object. Thus, for default objects, a total 
of 60 training photos were captured by each participant: 10 
photos for the k-cups and 20 photos for the boxes. This was 
repeated with and without guidance. Some participants erro-
neously repeated the training for some of the object sides, and 
therefore they captured more photos than needed. For a fair 
comparison, excess data was discarded during the training of 
the recognition model. The system captured 10 to 40 training 
photos for each participants’ objects, due to the varying num-
ber of sides. On average, for the default objects, 82 training 
photos were captured (SD = 19.9) with guidance, and 76.9 
(SD = 20.6) without. A total of 1589 photos were captured. 
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Figure 6: Number of objects trained in Session 2 

During Session 2, 142 objects were trained. The number 
varied noticeably between participants, from 0 to 30 (see Fig-
ure 6). On average, 8 (SD = 6.5) objects were trained with 
guidance and 6.2 objects (SD = 6.0) without. 6 participants 
balanced between the two modalities, while others used one 
modality only. P2, P3 and P9 performed the training only 
with guidance, while P7 captured photos only without (see 
Figure 6). P10 captured no additional objects in Session 2, 
while two participants, P3 and P6, trained some of their ob-
jects multiple times under different labels. P3 trained 5 of the 
objects twice with guidance, while P6 trained 2 of the objects 
twice with guidance and 1 object twice without guidance. 

The types of the objects trained by the users in Session 1 and 2 
are in substantial agreement with the objects of interest for peo-
ple with visual impairments identifed in prior literature [17]. 
All participants trained food and drink items that are diffcult 
to recognize otherwise, such as cans, boxes and bags. P2, P5, 
P7 and P8 trained hygiene and cleaning products, while P2, 
P4 and P8 included t-shirts and other clothing. Female par-
ticipants (P2, P5, P7 and P9) had cosmetic products among 
their objects of interest, P4 and P5 also included medicines, 
and P1 and P3 added appliances such as remote controllers 
or radios. In addition to categories found in prior literature, 
three new object types were also present. Specifcally, P2, 
P7 and P8 also included objects related to pets or guide dogs, 
such as dog food, treats and wipes. P9 and P10, who have 
sighted children, included colouring and story books, while 
P3 included pictures of his family members. 

Testing Photos 
For the recognition of default objects in Session 1, 5 photos 
were captured each time. We repeated this procedure 5 times 
for each side of the object, both with and without guidance. 
Thus, in total, every participant was supposed to capture 150 
photos for each condition. Again, some participants captured 
more photos which were discarded, and others captured less 
photos, which was not a problem because having a different 
number of testing photos has no impact on the recognition 
model or on the resulting accuracy. Specifcally, P5 captured 
65 photos with guidance and 135 without; P9 captured 130 
with guidance and 100 without; and P10 captured 145 with 
guidance and 85 without. In total, 1390 testing photos were 
captured with camera-aiming guidance, and 1370 without. 

http:ReCog.We
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Figure 7: Photo quality assessment scores 

For participants’ objects, on average 50.5 testing photos were 
captured with guidance (SD = 29.9) and 62 without guidance 
(SD = 40.3) during the frst session. During Session 2, simi-
larly to the training photos, also in the case of testing photos 
there was a high discrepancy between the number of photos 
per participant and per condition. Indeed, with camera-aiming 
guidance, the average number of photos captured was 83 (SD 
= 103.3), while without guidance it was 46 (SD = 96.7). 

Most participants trained the system with objects that they 
never attempted to recognize (P1, P4, P5, P6, P7). Indeed, 
the total number of tested objects was 89, much lower than the 
142 trained objects. The average number of tested object with 
guidance was 3.7 (SD = 4.79) and 5.2 (SD = 7.16) without. P5 
and P6, also tried to recognize objects that were not trained. 
P5 tried to recognize one untrained object while P6 tried to 
recognize 7 untrained objects (all k-cups of different favours) 
in both interaction modalities. On this matter, P6 explained: 

“Without the app being able to say that the object was 
not trained, its practical use is greatly limited.” 

Photo Quality Assessment 
To evaluate the impact of the camera-aiming guidance on the 
quality of the photos, two annotators labeled and compared 
the training photos of the default objects with and without 
guidance collected in Session 1. The annotators compared the 
photos in pairs, one from each condition, in the same capturing 
order (i.e., frst photo captured with guidance is compared to 
the frst one captured without). The metrics used were derived 
from the camera pose quality metrics defned previously: 

centering: the annotators selected the photo in which the 
distance between the object center and the center of the 
photo appeared to be shorter, if not equal. 
scaling: the annotators selected the photo in which the 
object size appeared to be closer to the size of the photo, 
without being too big or too small, if not equal. 

Cohen’s Kappa coeffcient was computed to measure the inter-
rater agreement on 20% of the data which was labeled by 
both annotators [10]. The annotators have assigned the same 
scores on 72.5% of the data for the centering metric, reaching 
a moderate agreement score of 0.58. For scaling, the identical 
scores were assigned in 93.3% of the cases, with a substantial 
agreement score of 0.76. 

As shown in Figure 7a, 64.2% of photos were better with 
guidance (SD = 19.8%) and 18.8% without (SD = 12.2%). 
Wilcoxon Signed Rank Test revealed that the difference is 
signifcant (Z = 3.78, p < .001). Thus, participants were bet-
ter at centering the objects with camera-aiming guidance 
than without. Similarly, as shown in Figure 7b, photos cap-
tured with camera-aiming guidance received signifcantly 
higher scaling score (M = 65.3%, SD = 28.9%) than without 
guidance (M = 22.9%, SD = 23.9%); Z = 2.80, p < .01. 

To evaluate how photo quality changed between sessions we 
could not use the same metrics because the same objects were 
not present in both sessions and different conditions. Thus, 
we manually labeled 1/6 of Session 1 photos (100 images) 
for each condition and the same number of Session 2 photos. 
On these, we measured raw proximity and center offset scores 
and compared them across conditions. Between Session 1 and 
Session 2 the proximity metric improved from 0.35 to 0.48 
on average for the guided condition and from 0.25 to 0.49 for 
the not guided condition (see Figure 7c). In both cases the 
difference was statistically signifcant based on Mann-Whitney 
U test (p < .001). Instead, the center offset metric improved 
from 0.77 to 0.80 for the guided condition and from 0.59 
to 0.78 for the non-guided condition (see Figure 7d). Only 
the latter difference was statistically signifcant (p < .001). 
Thus, with prolonged usage the scores improve for both 
conditions and in particular for non-guided condition. 

Recognition Accuracy 
Since the photos captured with guidance are better centered 
and scaled, we hypothesize that: 

H1: The photos captured with camera-aiming guid-
ance are recognized more accurately by the system. 

Since the system selects the recognition result with the highest 
confdence score of 5 testing photos, we also expect that: 

H2: Calculating the recognition over multiple photos 
improves the recognition accuracy. 

To test these hypotheses, we ran the experiments with the 
photos of default objects from Session 1. We conducted a 
2×2×2 ANOVA considering as factors the guidance mode 
(with vs. without) and the number of testing photos (1 vs. 5). 
In addition, we also included the training mode (quick vs. full) 
as a factor since it is also expected to affect the accuracy. 
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Figure 8: Full training accuracy with and without guidance 

The results revealed that there is a signifcant interaction effect 
between guidance mode and training mode; F(1,9) = 7, p < 
.01. As expected, the post-hoc analysis with paired t-tests 
showed that the recognition accuracy with full training mode 
was consistently higher than with quick training, both with 
guidance (p < .001) and without guidance (p < .05). However, 
the effect of the guidance mode within the same training mode 
differed. Indeed, the average accuracy with camera-aiming 
guidance (M = 0.94 SD = 0.06) was signifcantly higher than 
without guidance (M = 0.83, SD = 0.17) for full training (t9 = 
2.61, p < .05); see Figure 8. 

Conversely, there was no signifcant difference in recognition 
accuracy between the two guidance modes for quick training 
modality (with guidance: M = 0.64, SD = 0.14; without guid-
ance: M = 0.68, SD = 0.19). Thus we conclude that H1 is 
true, but only for the full training mode. Instead, the main 
effect of the number of testing photos and other interaction 
effects were not found to be signifcant. Therefore, there is 
no effect of the number of testing photos on recognition 
accuracy (H2). 

As previously noted, participants’ objects were extremely dif-
ferent in type, material, number of sides and overall com-
plexity. Due to this, a fair comparison of the accuracy in 
recognizing the objects in Session 2 could not be conducted. 
Nonetheless, we note that for most participants the accuracy 
in the recognition of their own objects was consistent with 
the results obtained for the default objects in Session 1. For 
example, for P1 the average accuracy with guidance was 0.95 
and 0.86 without guidance. Similar results were obtained for 
P6 and P8. However, accuracy scores were lower in presence 
of transparent (P2: 0.6 guided) or almost identical objects 
(P3: 0.68 guided, 3 of the 6 objects were very similar remote 
controls). 

System Usability Scale 
We also collected the participants’ subjective evaluation of 
the system after each session in the form of System Usability 
Scale [7] and additional Likert scale questions. At the end of 
the frst session, we collected the answers in person, while 
at the end of the second one, we collected them via e-mail. 
Two participants (P9 and P10) never replied regarding the 
second questionnaire, and therefore they were omitted from 
the following analysis. 

The results, shown in Figure 9, report an average score of 
81.9 in the frst session (SD = 5.8), and 72.2 in the second 
(SD = 15.7). While both scores can be considered good [29], 
there was a noticeable decrease after prolonged usage. Such a 
decrease is actually expected as users acquire experience with 
a system [21]. 

Considering specifc questions, we note that the frst question, 
which assesses how frequently the participants would use the 
system, decreased from an average of 4 (SD = 0.6) to 2.5 (SD 
= 1.3). The decrease was found to be statistically signifcant 
(p < .01) with a paired t-test. Question 6, which assessed the 
perceived inconsistency of the system also increased signif-
cantly (p < .05), from 1.4 (SD = 0.5) to 2.0 (SD = 0.9). No 
other answers were found to vary signifcantly. 

Camera-Aiming Guidance Evaluation 
Participants were asked to rate the photo capturing functional-
ity with and without guidance in terms of the perceived ease of 
use, effciency and confdence on a Likert-like scale ranging 
from 1 to 7. As shown in Figure 10a, the participants per-
ceived the guidance to be easier to use, more effcient and they 
felt more confdent using the system with it. In particular, P2 
reported that she did not feel confdent using the app without 
guidance. Indeed, this participant favoured guidance consid-
ering all metrics (effciency, precision, ease of use), different 
levels of expertise (novices and experts), and both training and 
recognition tasks. This is also confrmed by the photo data 
analysis (see Figure 6), which shows that this participant did 
not train any objects without guidance. 

However, we also found a signifcant increase in users’ con-
fdence in using the app without guidance after the second 
session (t-test p < .01). Indeed, the average confdence score 
using the app without guidance increased from 3.9 (SD = 1.97) 
to 5.14 (SD = 2.03). Our intuition is that the participants grad-
ually learned to aim the camera with guidance and therefore 
became more capable in interacting with the app even without 
it. This claim was supported by participants’ own remarks. 
For example, P1 reported: 

“Because I did with the audio frst, I sort of knew how to 
center it, but I didn’t know if I succeeded.” 

This fnding is further confrmed by the changes in the partic-
ipants’ preferred photo capturing modality between Session 
1 and Session 2 (see Figure 10b). In particular, P7, who al-
ready had experience in capturing photos without guidance, 
expressed a strong preference for this interaction modality. 
Indeed this participant trained Session 2 objects without guid-
ance only, as we can see in the photo data analysis (see Fig-
ure 6). 

While all participants agreed in both sessions that novice users 
could beneft the most from the guidance, after the second 
session, the percentage of those who considered that the pre-
ferred interaction for expert users would be without guidance 
increased from 30% to 75% (Mc’Nemar’s test p < .05). No 
other scores changed signifcantly. As a result of the increased 
confdence, after the second session, 37.5% of the participants 
reported that they would prefer to interact with the app without 
guidance during the recognition. 
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Nonetheless, the participants unanimously stated that they 
would still rely on guidance during the training. Even P7, 
who only used ReCog without guidance, agreed that guidance 
would be useful for novice users and during training in order 
to create reliable recognition models (see Figure 10b): 

“I like this (guidance) for training, but not for recogni-
tion... because I was getting feedback I felt like I was 
doing it correctly and gathering the information it was 
supposed to gather” 

Participants’ Observations 
The participants also reported observations about the system 
that they uncovered with prolonged usage. 

Motivation and Use Cases. 
ReCog does not intend to be an all-purpose object recognizer. 
Instead, it targets those objects that cannot be recognized oth-
erwise. Some of the participants’ objects (clothing, pictures, 
medicines) belonged to this category, and indeed, participants 
appreciated this capability of the system (P1, P4, P5, P5, P8). 
In particular, P8 says: 

“I began to see how an object recognition software like 
yours could help me in everyday life. It is an alternative 
solution to recognize things that do not have bar codes 
or the bar codes not being on the database” 

End-User Training Is Required. 
One of the main concerns that the participants had is the effort 
needed to collect the photos for training the recognition model 
(P1, P2, P4, P5, P7, P8). For example, P8 remarked: 

“I don’t have to spend time to train other recognizers.” 

Labeling Unknown Objects. 
Another diffculty reported by the participants (P1, P2, P4, 
P5, P8), and highlighted in the prior literature [17] is labeling, 
which requires knowing what an object is before training. 
One possible solution is labeling objects immediately after 
receiving them, while still knowing what they are. However, 
that was also considered a limitation by P2: 

“I don’t believe that my life is always structured enough 
to do the training when I still know what the items are.” 

To mitigate this issue, P3 and P7 suggested to use crowdsourc-
ing [6] or video assistance [4] for labelling. 

Recognition on Multiple Photos. 
To improve the recognition accuracy, we included the possi-
bility to capture and perform the recognition using multiple 
photos, returning the highest confdence score among the de-
tected objects. For this study, we set the number of photos 
to 5. This feature, however, was perceived negatively by the 
participants. Notably, P7 states: 

“I would cut down on the amount of pictures needed to 
recognize an object.” 

Diffculties in Tracking Trained Objects. 
As we have seen, many participants trained the system with 
objects that they never attempted to recognize afterwards. This 
may mean that the participants trained the objects that they 
thought they might need, but that they did not need all of them 
during the limited duration of the study. 

However, others also tried to recognize objects that were not 
trained, or trained the same objects multiple times. This sug-
gests that it is diffcult for users to keep track of trained objects 
once their number increases, particularly if those objects are 
of the same type, such as k-cups trained by P6. This may lead 
to the same objects being trained multiple times, users trying 
to recognize objects that were never trained, or not trying to 
recognize previously trained objects. 

DISCUSSION 
We discuss the results of the evaluation of ReCog. 

Photo Quality and Its Impact on Accuracy 
As prior research hints [17], consistency between training and 
testing photos may improve the recognition accuracy. On the 
one hand, improvements in computer vision can mitigate some 
of the real-world sources of inconsistency, such as luminosity 
variations. On the other hand, user guidance can be effective 
for improving consistency in terms of object framing and 
scaling in the captured photos [23]. 

We confrm this fnding, and show how our technique improves 
object framing consistency through audio-driven camera-
aiming guidance, which also results in a higher recognition 
accuracy. Our approach for enforcing consistency in the cap-
tured photos could also be used to improve the recognition 
accuracy if the training was performed by others. This could 
be useful in the case of a generic object recognizer, or when 
submitting an image query to a crowdsourcing service. 
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Figure 10: camera-aiming guidance qualitative evaluation and usage preferences 

The Effectiveness of Full Training and Multi-Photo Testing 
Results suggest that full training achieves the high recognition 
accuracy and benefts most from the increased quality of the 
captured photos using guidance. Nonetheless, quick training 
provides results much faster, and therefore can still be useful 
for providing intermediate but immediate recognition results. 

Surprisingly, capturing more testing photos does not improve 
the accuracy. Instead, it seems that the photos captured in 
sequence have similar visual characteristics and therefore pro-
duce the same results; if the recognition is accurate on one 
photo it will likely be accurate also on others in the same se-
quence. Since the use of multiple test photos does not improve 
the accuracy and entails a higher workload for the users, it 
will be removed from the future iterations of the system. 

ReCog as a Learning Tool for Photo Capturing 
Participants remarked that they had limited knowledge on how 
to capture well-framed photos (P2, P6, P7, P8), in particular 
regarding camera distance. Thus, participating to the study 
was a valuable source of insight. For example, P6 commented: 

“Participation to research was most educational. How 
far the camera has to be, how sensitive it is to tilt. I had 
no clue. I thought the closer the camera is the better the 
image is going to be. Too close it’s blurry and you don’t 
get the whole picture. And light and background and 
all these things I learned it through your research. For 
example I didn’t know that light can make difference.” 

This is confrmed by photo quality improvement in Session 
2 as well as qualitative scores and preferences (see Figures 7 
and 10). Indeed, several participants found it easier to use the 
system without guidance after having used it with guidance 
frst (P1, P3, P4, P6, P7). Furthermore all participants agreed 
that guidance would be useful for novices, and 6 out of 8 stated 
that for experts interacting without guidance would be better. 

Thus, ReCog improves the photo capturing skills of the users 
by teaching them how their camera aiming impacts the quality 
of the captured photos. We believe that, through prolonged 
usage of the system with audio guidance frst and without 
afterwards, blind users may acquire the knowledge on how 
to capture good photos, which would be benefcial for other 
similar software or photo sharing on social media [5]. 

CONCLUSION 
We designed and developed ReCog, an interactive smartphone 
application that enables blind people to recognize their per-
sonal objects. This is achieved by capturing photos of such 
objects and training a recognition model with them. This ap-
proach complements general object recognizers, which can rec-
ognize common objects only, and crowdsourcing approaches, 
which rely on human intervention for detailed object recog-
nition. Since capturing well-framed photos is a known dif-
fculty for blind people, we augmented our system with a 
camera-aiming guidance module that supports the users while 
capturing photos. 

We evaluated the system with 10 blind participants who found 
it to be usable and accurate. During Session 1, we uncov-
ered a subjective preference for camera-aiming guidance. The 
analysis of the captured photos confrmed that the use of the 
guidance modality results in more consistent photo captur-
ing. In particular, the captured objects are better centered and 
scaled with respect to the photo frame. 

During Session 2, the participants gradually started to prefer 
to use the system without camera-aiming guidance as they 
improved and acquired confdence in their photo taking skills 
through prolonged usage of the system. However they still felt 
more confdent using the system with camera-aiming guidance 
for the training of the object recognizer to ensure a higher 
recognition accuracy. 

We also discovered specifc limitations due to the nature of 
the object recognition technology. While single photos are 
suffcient at testing time, multiple photos of an object need to 
be captured during the training, which users may fnd cumber-
some. The system relies on the labeling of the trained objects, 
which may require sighted assistance or the using an external 
system. As a future work, we will integrate ReCog with gen-
eral object recognizers and crowdsourcing approaches in order 
to minimize the user’s need for intervention. 
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