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Navigation assistive technologies are designed to support people with visual impairments during mobility.
In particular, turn-by-turn navigation is commonly used to provide walk and turn instructions, without re-
quiring any prior knowledge about the traversed environment. To ensure safe and reliable guidance, many
research efforts focus on improving the localization accuracy of such instruments. However, even when the
localization is accurate, imprecision in conveying guidance instructions to the user and in following the in-
structions can still lead to unrecoverable navigation errors. Even slight errors during rotations, amplified by
the following frontal movement, can result in the user taking an incorrect and possibly dangerous path.

In this article, we analyze trajectories of indoor travels in four different environments, showing that rota-
tion errors are frequent in state-of-art navigation assistance for people with visual impairments. Such errors,
caused by the delay between the instruction to stop rotating and when the user actually stops, result in over-

rotation. To compensate for over-rotation, we propose a technique to anticipate the stop instruction so that
the user stops rotating closer to the target rotation. The technique predicts over-rotation using a deep learn-
ing model that takes into account the user’s current rotation speed, duration, and angle; the model is trained
with a dataset of rotations performed by blind individuals. By analyzing existing datasets, we show that our
approach outperforms a naive baseline that predicts over-rotation with a fixed value. Experiments with 11
blind participants also show that the proposed compensation method results in lower rotation errors (18.8◦

on average) compared to the non-compensated approach adopted in state-of-the-art solutions (30.1◦).
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1 INTRODUCTION

Independent mobility is one of the greatest challenges for people with visual impairments or blind-
ness (VIB). Among the many navigation assistive technologies proposed to address this challenge,
turn-by-turn navigation is a common and particularly suitable approach because it provides step-
by-step guidance toward a specified destination without requiring any prior knowledge about the
traversed environment [13]. This approach involves three key steps: (1) definition of navigation
routes in terms of sequences of straight paths and turns, (2) continuous tracking of the user’s
position and orientation within the route, and (3) notification of turn instructions upon reaching
turning points within the navigation route.

In the case of sighted individuals, turn-by-turn guidance, such as Global Positioning System
(GPS) navigation used while driving, relies on the user’s sense of sight to visually confirm the
goodness of the provided instructions and to correct for localization inaccuracies or disambiguate
between adjacent paths. Instead, without the possibility to perform sight-based route confirma-
tion and correction, navigation assistance for VIB people requires much more accurate guidance.
Therefore, a great amount of research on turn-by-turn navigation assistance focuses on achieving
as high localization accuracy as possible to guarantee persistent and reliable navigation assis-
tance [42].

However, even when the localization accuracy is high, imprecision in following guidance in-
structions can equally impact the navigation outcome. In particular, our prior work [5] shows that
even small errors while following rotation instructions can lead to a significant distance offset
during the following frontal movement, which in turn can result in the user taking an incorrect
path (Figure 1). Such errors are frequent and can cause delays in reaching the desired destination,
make the user lose orientation and not being able to recover the navigation, or even lead toward
potentially hazardous areas.

One of the main factors contributing to this kind of errors is that turn-by-turn navigation sys-
tems, particularly the considered system, use a single impulsive sound to instruct the user to stop
rotating (henceforth called stop instruction). Using a short duration sound avoids prolonged occu-
pation of the user’s hearing channel. However, there is a temporal delay between the stop instruc-
tion and when the user actually stops rotating, which results in over-rotation. Considering that
in the considered system the stop instruction is played only when the target rotation is reached,
over-rotation results in rotation error (i.e., the angular distance between the target rotation and
the actual one). This effect is presented in Figure 1(a).

1.1 Contributions

This article extends our prior work, presented at the 20th International ACM SIGACCESS Confer-
ence on Computers and Accessibility [5], with three additional key contributions:

(1) We confirm our prior findings on the magnitude of rotation errors and their impact on the
navigation outcome during guidance. We also show that these findings generalize to very
different environments and use cases. For this purpose, in addition to the data presented
in our previous work [5], we analyze three additional datasets of navigation logs collected
using NavCog [41, 54], a mobile turn-by-turn navigation assistant for people with VIB.

(2) We propose a novel technique that reduces rotation errors by compensating over-rotation
with an anticipated stop instruction so that the user actually stops close to the target
rotation. This is achieved by playing the stop instruction when the user’s current rotation
plus the predicted over-rotation equals the target rotation (see Figure 1(b)). We predict the
over-rotation with a deep learning model, a multilayer perceptron (MLP) feed-forward
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Fig. 1. The effect of over-rotation during rotation instruction with and without compensation.

neural network, using rotation speed, time, and angle as features. The model is trained
with a dataset of rotations performed by blind participants.

(3) We evaluate the prediction model against a naive baseline approach, in which the pre-
dicted over-rotation is computed as the mean value from previous data. Using existing
datasets of rotations performed by blind people, we show that the proposed approach
outperforms the baseline in terms of prediction accuracy (i.e., the difference between the
predicted over-rotation and the actual one). We also evaluate our technique in experiments
conducted with 11 blind participants. Results show that our technique results in lower ro-
tation errors, 18.8◦ on average, compared to 30.1◦ achieved without compensation (i.e.,
the state-of-the-art technique).

2 RELATED WORK

Orientation and way-finding are commonly achieved by visually exploring the surroundings in
order to find reference points and make decisions on the path to follow [34]. For people with VIB,
the same can be achieved using auditory, haptic, and vestibular sensing, along with their residual
sight (if any) [18]. For example, blind people may identify nearby reference points or obstacles
through haptic exploration using a white cane [32]. Thus, even though sighted people and people
with VIB rely on different sensory abilities, their exploration model based on the inspection of
the surroundings is very similar [55]. However, non-visual way-finding is less accurate and has a
lower sensory range compared to visual exploration; hence, it is is also longer, more error prone,
and cognitively demanding [60], particularly for long range exploration [62].

Thus, there are stark differences in how people with VIB and sighted people face navigation
challenges in familiar and unfamiliar environments [64]. Indeed, since autonomous exploration of
unfamiliar places is time consuming, cognitively demanding, and even possibly hazardous, people
with VIB tend not to explore new routes for the first time unassisted [36]. Therefore, people with
VIB generally learn new routes through orientation and mobility (O&M) training, assisted either
by a sighted person [63] or by a visually impaired person who knows the route precisely [43].
Recently, several different assistive technologies have also been proposed for navigation assistance
and route learning [11]. In particular, mobile assistive technologies have become a viable option
for autonomous learning of new routes [47]. The adoption, frequency, and modality of usage of the
available assistive technologies, however, are not homogeneous among people with VIB. Instead,
these factors largely depend on the user characteristics and usage scenario [4, 28, 65].

2.1 Navigation Assistance

Thanks to the recent advances in the field of navigation assistive technologies, people with VIB can
rely on several different solutions to plan and follow a route, or inspect their surroundings, both
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in indoor and outdoor environments [14]. Embedded navigation tools are a common approach
to support non-visual way-finding [6, 16, 35, 50]. However, these solutions are built as propri-
etary devices, which can be cumbersome, expensive, or draw attention. These limitations result
in a lower adoption [57] and higher discontinuance rate [51] of such assistive technologies. Con-
versely, smartphone applications [11] use widespread devices to support people with VIB in the
process of planning ahead the navigation along a route [19] and during the navigation toward a
target destination [54]. These include mainstream navigation assistance applications (e.g., Google
Maps, Apple Maps) [47] and specialized software specifically designed to assist people with VIB
in O&M [8, 29].

In particular, turn-by-turn navigation assistance has been proposed as an effective way of pro-
viding guidance to people with VIB [41, 54]. This approach translates a route into a graph of
straight path segments and turning points, which are traversed sequentially. This paradigm is
useful for people with VIB since contextual knowledge of the environment is not needed to be
able to follow navigation instructions [13]. Furthermore, the provided instructions are provided
one at a time and notified only when needed, so the user does not need to memorize the route or
constantly track the navigation progress.

To support navigation assistance, several different localization approaches are used. For out-
door environments, GPS localization, also commonly used in vehicular navigators, typically is
adopted [10]. In indoor environments where GPS signal is inaccurate or unavailable, localization
can be achieved using computer vision–driven recognition of visual features [52], visual light
communication [42], or radio signal mapping using WiFi [49] or Bluetooth beacons [33, 41]. In
particular, Bluetooth beacon–based approaches achieve 1- to 2 m localization accuracy [41] using
off-the-shelf equipment that can easily be installed [17]. Other approaches extract points of in-
terest and contextual knowledge from geographical information services (GIS), such as shops or
restaurants [29], or provide the user with sonified, verbal, or haptic guidance instructions toward
a feature of interest [39, 44] or around an obstacle [48, 58].

2.2 Navigation and Rotation Errors

During turn-by-turn navigation toward a target destination, sighted people can compensate for
possible localization errors through visual exploration of the surroundings [67]. Conversely, er-
rors during non-visual way-finding cannot be corrected by long-range inspection, and therefore
the navigation outcome can be affected by imprecision in localization and navigation instruc-
tions. Such imprecision can be caused by environmental factors [30] or user movements such as
veering [15, 24] and incorrect rotation [9, 26]. Although issues such as veering can be somewhat
mitigated through O&M training [23], in practice they are a consistent source of navigation errors
during turn-by-turn navigation assistance [20].

Similarly, our prior work shows that user imprecision during rotations is responsible for a signif-
icant number of navigation errors [5]. Indeed, previous research highlights that both sighted [53]
and blind [37] people tend to misjudge rotations, and particularly that vestibular tracking of ro-
tations is cognitively demanding [66], which facilitates the occurrence of rotation errors. Specifi-
cally, rotation errors in following instructions (e.g., speech or sonified messages) are affected both
by how the instruction is decoded and by how the rotation is performed [9]. Such rotation errors
are also related to the target turn angle [9]. Indeed, rotations at a 90◦ rate [2, 27] are easier to detect
and track, and therefore are performed more accurately than other types of rotations.

2.3 Preliminary Work

Our prior work investigated the magnitude of the rotation errors and their effect on navigation
assistance outcome in a real-world scenario [5]. For this purpose, we collected the navigation
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Fig. 2. Preliminary experiment.

trajectories and videos of 11 participants with VIB during turn-by-turn guidance in a large shop-
ping mall environment using NavCog navigation assistant [41, 54] (Figure 2(a)). NavCog is a turn-
by-turn navigation system that relies on an installation of Bluetooth beacons and a map of their
radio signal distribution in the environment to accurately localize and guide a user. Similarly to
other turn-by-turn navigation software, NavCog instructs the user to start a turn with a simple
verbal message (e.g., “Turn right”), then it uses an impulsive sound to notify the user to stop rotat-
ing when the target rotation is reached. Specifically, NavCog uses the default iOS “calendar alert
chord” sound, a sequence of three notes:(F4,C5, and F5) played at 0.1-second distances and decay-
ing exponentially in about 1 second. During the rotations, the collected data included gyroscope
measurements that were used to evaluate rotation errors. The analysis of the gyroscope data has
shown that the participants have the tendency to over-rotate turns, which results in rotation er-
ror (see Figure 5(a) and Figure 5(b)). Furthermore, the rotation errors were found to be higher for
slight turns (22.5◦ to 60◦) than for ample turns (60◦ to 120◦), as shown later in Figure 6(a). The
analysis of recorded videos also highlighted that higher rotation errors during slight turns corre-
late to a greater occurrence of navigation issues at 45◦ intersections, which was also hinted to in
prior works [54] (see Figure 2(b)). Instead, for ample turns, we noticed that the participants often
rotated by 90◦ with remarkable precision, regardless of the target rotation (see Figure 2(c)1).

These findings suggest that simply notifying the user when the rotation should be stopped with
a single impulsive sound is error prone, and therefore different interaction is required to convey
accurate rotation instructions. Using sonification to provide continuous feedback while rotating
can help the user slow the rotation when approaching the target direction [3]. Our prior studies
confirm that such an approach can mitigate rotation errors compared to impulsive sound feed-
back but also results in slower rotations. Additionally, it is not clear how the increased auditory
and cognitive load of such interaction may impact real-world navigation assistance and how the
understanding of continuous sonification feedback is impacted by surrounding noise such as traf-
fic. An alternative approach, which we investigate in this work, consists of compensating for the
rotation errors by preempting the stop instruction. This way, the interaction remains unchanged
without increasing the rotation time or the auditory and cognitive loads of the feedback.

3 EVALUATION OF ROTATION ERRORS ACROSS DIFFERENT ENVIRONMENTS

Our initial study [5] explored the impact of rotation errors on the outcome of turn-by-turn nav-
igation assistance in a large-scale environment: a shopping mall during working hours [54]. To

1Boxplots range from the first to third quartile, whiskers are min. and max., and line and circle markers are median and
mean.
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Fig. 3. Mall and museum testing environments (routes as colored lines).

ensure that our findings generalize to diverse scenarios, we repeat the analysis on three additional
datasets of navigation trajectories, collected using NavCog in three different environments: a mu-
seum [7], an airport [20], and a hotel during a conference for VIB people [46]. These environments
were selected because they present diverse and unique navigation challenges. For example, a mu-
seum requires precise short-range navigation, whereas an airport presents ample and long-range
routes.

3.1 Datasets Description

We briefly describe the four datasets used. Detailed information is reported later in Figure 5(b).

3.1.1 Mall Dataset. This dataset was collected in situ at the Coredo shopping mall in Tokyo
during working hours. We installed the NavCog system on five floors of three buildings and a
public basement area. For the experiment, we selected three routes, spanning across three floors,
of the total length of 400m and containing 26 turns (Figure 3(a) and see Table 5(b)). The study
was conducted with 11 participants with VIB [54] and consisted of three navigation tasks with the
NavCog system on the defined routes. During the tasks, the system collected usage logs, including
trajectories and rotations performed. The experimenters followed the participants to ensure their
safety and collect navigation videos.

3.1.2 Museum Dataset. We collected this dataset during a user study at the Andy Warhol Mu-
seum in Pittsburgh [7]. We deployed the NavCog system on one floor of the museum and extended
the app to support an independent museum experience combining both accurate navigation in the
narrow museum area and appreciation of surrounding artworks. We created two routes with a
combined length of 190m and containing 13 turns (see Figure 3(b) and Table 5(b)). In the Naviga-
tion mode, the app provides turn-by-turn guidance and informs the user about nearby artworks
(e.g., “Campbell Soup Can is on your right”). In the Art Appreciation mode, the app plays audio
content describing the artworks. The users can change between Navigation and Art Apprecia-
tion modes by turning toward artworks or a route, respectively. We performed a study with nine
legally blind participants who followed two interest-based routes for museum visitors after a short
practice route. Participants took approximately 1 hour to complete the experiment (including ques-
tionnaire and post-interview), including an average of 33 minutes navigating the two routes. Two
participants performed the tasks with a guide dog, whereas the others used a white cane.

3.1.3 Airport Dataset. This dataset was collected during a user study at Pittsburgh International
Airport (PIT). We deployed the NavCog system in the ticketing area, on the main terminal and one
concourse, and extended the app to work on moving walkways and to include veering correction
to help the users cope better with large open areas of the airport. In the study, 10 people with
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Fig. 4. Airport and hotel testing environments (routes as colored lines).

Fig. 5. Information about the datasets and average rotation error.

visual impairments completed four navigation tasks on routes that are relevant to their air travel
experience (e.g., navigating to the gate or from the gate to a restroom, restaurant, or store) [20].
The routes were approximately 700m long in total and contained 14 turns (Figure 4(a) and see
Table 5(b)). Participants took approximately 2 hours to complete the experiment, including an
average of 16 minutes actively navigating in the environment using NavCog. The dataset included
four guide dog users, five white cane users, and one participant with low vision who did not use
a navigation aid.

3.1.4 Hotel Dataset. This dataset was collected during a 4-day conference (October 26–29, 2017)
held by the Pennsylvania Council for the Blind at a hotel in Pittsburgh [46, 54]. We deployed the
NavCog system on the whole venue area, spanning the ground floor of the hotel, and announced
to conference attendees that they could either download the navigation app from the iOS App
Store on their personal devices or try it on testing mobile devices that we prepared for the occa-
sion. The users were informed in-app and by organizers that the system would collect anonymous
usage data, including user trajectories and gyroscope measurements. The users were allowed to
navigate the venue freely by themselves, so there were no specific testing routes (see Figure 4(b)
and Table 5(b)). No demographic data about the users was collected, and no in-person training was
provided to the participants.

ACM Transactions on Accessible Computing, Vol. 12, No. 4, Article 19. Publication date: December 2019.
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Fig. 6. Rotation error for ample and slight turns for the original and new datasets used.

3.2 Data Analysis and Results

Figure 5 shows the presence of significant rotation errors for all of the tested environments, con-
firming our prior findings [5]. As in our previous work, we also verify the presence of higher
rotation errors for slight turns (22.5◦ to 60◦) compared to ample ones (60◦ to 120◦). These results
are reported in Figure 6.

3.2.1 Mall Dataset. Of the 286 turns performed, 8 turns were not completed due to navigation
errors and therefore were not included in the dataset. Among the 278 rotations in the dataset, 107
are defined as slight and 119 as ample, corresponding to 45◦ and 90◦ turning points, respectively. On
average, the participants rotated 14.9◦ ± 9.9◦2 more than instructed, which resulted in 34 incorrect

turns (12% of the total). Of those, 4 (10%) were labeled as self -corrected and 16 (47%) as system

corrected. These errors did not prevent the users from reaching the target, but they still caused
delays and fatigue. However, 42% of the incorrect turns (14 turns, 5% of the total) required stopping
the navigation to avoid danger or because participants could not recover their orientation. These
turns were labeled as failed. The distribution of correct and incorrect turns between 90◦ and 45◦

intersections was significantly different based on a Pearson’s chi squared test (χ 2 = 56.06, p < .01).
Specifically, for 90◦ intersections, 93% of turns were correct and 7% were incorrect (0.5% failed).
Instead, for 45◦ intersections, 78% were correct and 22% were incorrect (9% failed). The cause for
this dissimilarity was found to be the rotation error difference between slight (17.4◦ ± 4.0◦) and
ample turns (13.4◦ ± 3.7◦), which was statistically significant (U = 9501.0, p < .01). Additionally,
we found a significant (U = 7698.0, p < .05) reduction of rotation errors for participants with high
smartphone expertise (13.24◦ ± 9.62◦) compared to others (15.65◦ ± 9.97◦). Age also significantly
influenced rotation accuracy (U = 6305.0, p < .01). Indeed, for participants younger than 45 years,
the rotation error was 17.70◦ (SD = 10.84◦) and 12.25◦ (SD = 8.26◦) for others. Follow-up analysis
reveals that participants older than 45 years were more cautious when starting to turn and more
reactive to stop instructions.

3.2.2 Museum Dataset. This dataset includes a total of 100 turns; this number varied among
participants due to the nature of the second task, in which the users were instructed to turn only
toward the artworks they were interested in. On average, the participants rotated 20.7◦ ± 13.1◦

more than instructed. Such rotation difference did not prevent users from reaching the destination,
but it caused either veering when navigating or a slight mismatch when facing the artworks to
listen to the audio content. Among the registered rotations, 33 were slight turns and registered
a rotation error of 32.1◦ ± 11.6◦. Instead, ample turns were 67, with an error of 15.1◦ ± 9.7◦. A
Mann-Whitney U test revealed that the difference is statistically significant (U = 294.0, p < .001),

2We will use Mean ± Standard Deviation notation.
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suggesting greater difficulty in estimating the correct orientation when performing a slight turn
than an ample turn. Age and blindness onset information were also collected but did not seem to
impact rotation errors.

3.2.3 Airport Dataset. This dataset includes 54 rotations, among which 40 are ample and 14 are
slight turns. On average, the participants rotated 14.6◦ ± 12.4◦ more than instructed. Such level of
rotation error did not prevent the participants from reaching the destination, but it caused sev-
eral navigation errors. In particular, due to the presence of long and wide corridors, small rotation
errors resulted in veering toward wrong directions. This issue was often corrected by the sys-
tem through “bear right/left” messages or re-routing. Average rotation error was 20.5◦ ± 14.2◦ for
slight turns and 12.5◦ ± 11.1◦ for ample ones. Again, the difference is statistically significant (U =
176.0, p < .05), confirming a greater difficulty to estimate the correct turning angle for slight turns.
We also explore the effect of participants’ age and navigation tool used (guide dog or white cane)
on rotation errors. Unlike the Mall dataset, there were no significant differences in rotation errors
between participants older than 45 years of age and others. Instead, regarding the navigation tool
used, participants supported by a guide dog had lower rotation errors (13.0◦ ± 14.3◦) than those us-
ing a white cane (16.26◦ ± 9.9◦). The difference was found to be statistically significant (U = 256.0,
p < .03). This may suggest that in an environment composed of long and wide corridors, white
cane users have little reference points during rotations, whereas guide dogs provide assistance in
selecting the correct direction while turning.

3.2.4 Hotel Dataset. A total of 280 in-the-wild travel logs were collected from 37 NavCog users.
Since the conference area spanned several nearby rooms on the same floor, the routes were often
short and simple. Indeed, on average, the traveled distance was 108.0m ± 71.0 and the duration
of the trips was 182.2 ± 131.0seconds. In total, 62 turns were logged, with 1.67 turns per user on
average. The rotation error was 22.14◦ ± 21.72◦ on average. Among the registered turns, 22 were
slight turns, whereas the other 40 were ample turns. The average rotation error for slight turns was
29.0◦ ± 21.3◦, which was greater than the average rotation error for ample turns (18.4◦ ± 21.3◦). A
Mann-Whitney U test also revealed in this case that the difference is statistically significant (U =
297.0, p = .018).

4 PREDICTIVE COMPENSATION OF OVER-ROTATIONS

The analysis of the three new datasets confirms consistent over-rotations that translate to high
rotation errors during turn-by-turn navigation assistance. This shows that our prior findings gen-
eralize to diverse use cases and motivates the need for a compensation mechanism to offset over-
rotation and mitigate the resulting rotation errors. A simple way to achieve this would be to antic-
ipate all turns by a fixed amount. However, given the high over-rotation variability among turns
of different magnitude, a compensation by a fixed value is not ideal. Indeed, our prior finding that
slight turns result in greater over-rotations compared to ample turns is also verified in all three
datasets.

Thus, we propose a technique to dynamically predict the over-rotation and preempt the stop
instruction to reduce rotation errors. At every moment during the user’s rotation, we predict what
would be the over-rotation if the stop instruction were played at the user’s current rotation angle.
If the current rotation angle plus the predicted over-rotation equals the target rotation angle, the
stop instruction is immediately played. We model the prediction problem as a regression that
estimates the over-rotation performed by the user after the stop instruction, and we design an
MLP feedforward neural network suitable for this task.
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4.1 Dataset and Feature Selection

The datasets collected in previous works were useful for motivating our research and for evaluat-
ing the magnitude of the rotation errors in different environments. However, they include a lim-
ited number of data samples, which are unequally distributed (i.e., mostly 90◦ turns, as shown in
Table 5(b)). Therefore, those datasets are not suitable to model the whole range of possible rotation
angles. Additionally, they have been acquired in the wild and potentially include noisy or misla-
beled data. For example, for the Hotel dataset, there have been occasions where the users did not
follow the instructions correctly because they stopped to chat with other conference participants.

To guarantee the reliability of the data used to train our regressor, we use a dataset of rotations
performed by people with VIB in a controlled setting [3]. This dataset contains rotation recordings
with several different interaction approaches. However, we consider only data in which the rota-
tion and stop instructions had the same interaction paradigm as in NavCog [54]. During the record-
ings, participants seated on a swiveling chair with the smartphone positioned on the chair handle
to minimize the effect of involuntary movements on the rotation measurements. The dataset col-
lects 324 rotations from 18 participants with VIB, divided in three rotation angles, both clockwise
and counter-clockwise, with three repetitions for each angle. It includes gyroscope data measur-
ing the angular velocity of rotations at a rate of 100Hz, with timestamps for each data sample. We
divide the dataset in 80% training and 20% testing data (259 and 65 samples, respectively).

We identify four features that we select for our prediction task:

• Rotation angle is the angle rotated between the turn instruction and the stop instruction for
each training sample. During usage, this corresponds to the user’s current rotation angle,
since we predict what the over-rotation would be if the stop instruction were provided at
the current moment. Previous analysis of ample and slight turns shows that this metric
impacts the over-rotation (see Figure 6). Spearman’s rank correlation coefficient analysis
shows significant correlation (p < .001) of weak magnitude (ρ = −0.26) between rotation
angle and over-rotation, which further motivates the inclusion of this metric as a feature.

• Rotation duration is the time between the turn instruction and the stop instruction for each
training sample. During usage, this corresponds to the current time since the turn instruc-
tion. Correlation analysis in this case reports a strong correlation with the over-rotation
measurement (p < .001, ρ = −0.53).

• Average rotation velocity is the average angular speed during rotation for each training sam-
ple. During usage, this corresponds to average angular speed since the turn instruction. We
find a significant correlation with over-rotation (p < .01) of moderate intensity (ρ = 0.47).

• Maximum rotation velocity is the maximum angular speed during rotation for each training
sample. During usage, this corresponds to maximum angular speed since the turn instruc-
tion. We detect a Spearman’s rank correlation coefficient of (ρ = 0.43), indicating moderate
correlation with the over-rotation, which also is significant (p < .01).

4.2 MLP Architecture and Evaluation

An MLP neural network is composed of one input layer of the size N equal to the number of
features and an output layer of the size M equal to the number of outputs of the network. In
our case, we have N = 4 features, described earlier, and M = 1 output, which is the predicted
over-rotation. When defining an MLP network, there are two key hyperparameters to select: the
number of hidden layers that compose the neural network and the number of neurons for each
hidden layer [59]. Although there have been diverse proposals and best practices [56], there is no
consensus on the method to adopt for this purpose, and the effectiveness of different choices varies
based on the problem and the data [61].
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Fig. 7. Over-rotation prediction.

For the architecture of our regression MLP network, we consider two main criteria: (1) To avoid
overfitting of the neural network, we set the upper bound of the number of neurons as L − 1,where
L = 259 is the number of training samples [25], and (2) we adopt a pyramid-based architecture in
which layers decrease in the number of neurons the closer they are to the output layer, which
was shown to provide robust results for regression tasks [40]. We define an initial network with a
single hidden layer having the same number of neurons as the input layer N = 4. We then increase
the number of hidden layers, each time adding a new one on top, having four times the neurons
of the previous layer. This is repeated until the network stops improving and while criterion (1) is
still valid. The resulting network has three hidden layers, with 4, 16, and 64 neurons.

We implement our network as a model for the Keras [22] Python library. We then train the
model with our dataset, and evaluate its over-rotation prediction accuracy with respect to the
non-compensated approach and a naive baseline—a flat compensation that simply computes
the prediction as the average over-rotation on the training data. We recall that 80% of the dataset
was used for training and 20% for the evaluation. The evaluation metric is defined as over-rotation
prediction error, and it is computed as the difference between the prediction and the actual over-
rotation. In case of the non-compensated approach, we consider the prediction to be 0◦. There-
fore, the prediction error will be equal to the over-rotation (20.65◦ ± 20.79◦). In the case of flat
compensation, the average over-rotation on the training dataset is 20.17◦, which is used as a
fixed-value prediction. The resulting over-rotation prediction error is 12.03◦ ± 16.96◦. For our
predictive compensation approach, the prediction error is 9.3◦ ± 16.42◦ (9.93◦ ± 16.64◦ for the
two-layer version and 10.13◦ ± 17.14◦ for the single-layer version), which improves over the non-
compensated approach by 11.35◦ and over the naive compensation approach by 2.73◦ on average
(Figure 7).

5 USER STUDY

We evaluated our approach in a controlled user study with 11 blind participants. We implemented
a test mobile app to conduct rotation experiments with and without compensation, measuring
rotation error using gyroscope data. Since we wanted to evaluate rotation errors due to human
imprecision and our system’s capability to compensate for such errors, a controlled testing envi-
ronment was used to minimize external sources of noise and distraction such as traffic or other
people’s voices. These factors instead depend on the environment context and could be learned
from context-specific datasets, which is left as future work.
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Table 1. Participants’ Demographic Information

ID Sex Age
Visual Impairment Experience with

Condition Since Music Smartphone NAT Which Ones?

P1 M 23 Totally blind 5 High Med. High Ariadne GPS, iMove

P2 M 34 Totally blind Birth None Low Med. —

P3 M 44 Legally blind 10 Low Med. High Google Maps, Navigon, Maps

P4 F 32 Legally blind 14 High Low Med. —

P5 F 29 Totally blind Birth Low Low Low —

P6 F 27 Totally blind Birth Med. Med. High Maps, Kapten

P7 M 39 Totally blind Birth None Low Low —

P8 M 38 Totally blind 3 High High High Maps, Kapten, Google Maps

P9 M 24 Legally blind 10 Low Low Med. —

P10 M 48 Totally blind Birth High Med. Med. Tried Ultra Cane

P11 F 37 Totally blind 5 High Low High —

5.1 Participants

We recruited 11 blind participants (seven male, four female) through word of mouth. Among them,
9 are totally blind and 2 are considered legally blind, having minimal residual sight. Their age
ranged between 23 and 48 years (34.1 ± 8.0). Five were blind since birth, whereas others became
blind between 3 and 14 years of age. High-level musical expertise was reported by 5 participants,
whereas one reported medium expertise, three low, and two none. Six participants reported low
expertise with smartphones, 4 considered their expertise medium, and 1 participant stated to have
high smartphone expertise. In terms of expertise with navigation assistive tools (NATs), 5 partici-
pants considered their expertise high, and reported prior usage of tools such as Ariadne GPS [10],
iMove [29], and Kapten GPS [31]. Participants’ data is reported in Table 1.

5.2 Apparatus

For the study, we adapted an Android app used in our previous work [3] to evaluate rotation ac-
curacy with different sonification approaches. We defined two test modalities: without and with
predictive compensation. In terms of interaction, there is no difference between the two. In both
cases, the approach mimics the one used in the NavCog app [54]: the application presents a verbal
turn instruction (e.g., “turn left”) and, once the user has rotated sufficiently, it plays a single stop
instruction to signal to the user to stop turning. Without compensation, the stop instruction is
played when the current rotation angle is equal to or greater than the target rotation angle (see
Figure 1(a)). With compensation, the system computes the over-rotation prediction for every gyro-
scope reading in real time. The stop instruction is played when the predicted over-rotation, added
to the current rotation angle, is equal to or greater than the target rotation angle (see Figure 1(b)).

We used the DeepLearning4J [12] Java library to import and run our MLP Keras model for
predictive compensation. A Google Pixel 2 smartphone was used, with over-rotation prediction
computation executed for every gyroscope reading at a rate of 100Hz. Gyroscope readings were
also used to measure the rotation ground truth during the experiments, since the error introduced
by these sensors can be considered negligible [38]. The experiments were performed in controlled
and silent environments, and no additional instruments (e.g., earphones or white cane) were used.

5.3 Procedure

At the beginning of the study, we provided each participant with a brief description of the exper-
iment and its goals. Afterward, an experimenter collected participants’ demographic information
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Fig. 8. User rotation errors with and without predictive compensation.

and explained how to perform the rotation tasks. The participants were then led to the testing
environment and provided with a smartphone device running the test app. They were instructed
to stand straight, hold the device in front of the body, and follow the turn instructions, keeping
the direction of the device consistent with the direction of the body. We also advised them to turn
as they usually do during mobility, without specifically prioritizing speed or precision, and to stop
when the stop instruction was provided. The participant could then double tap on the screen of
the device to initiate a rotation task and could terminate a task and start the next one with the
same interaction. The tasks followed in sequence until completion. A first sequence contained 4
training tasks to ensure that the participant correctly comprehended the procedure. Afterward,
the main sequence of 48 tasks was performed. Since the tasks were very brief (about 10 seconds
per task), all of them were conducted in one sequence. In total, the experiment took between 10
and 15 minutes for each participant.

5.4 Results

As shown in Figure 8(a), the tasks performed with compensation had lower rotation errors (18.8 ±
19.6) than those without (30.1 ± 20.8). The difference is statistically significant based on a Mann-
Whitney U test (U = 22637.0, p < .001). The analysis of rotation errors divided by the turn type
shows that there remains a difference in rotation error between slight and ample turns, even for
the tasks performed with compensation. However, such difference is smaller for compensated than
for uncompensated tasks (see Figure 8(b)). Specifically, for uncompensated tasks, the rotation error
is 37.4◦ ± 20.5◦ and 22.7◦ ± 18.4◦ for slight and ample turns, respectively, resulting in a difference
of 14.7◦ on average. Instead, for compensated tasks, the rotation error is 22.5◦ ± 19.6◦ for slight
turns and 15.1◦ ± 19.0◦ for ample turns, totaling a lower difference of 7.4◦. These findings not
only confirm that our approach is effective in reducing rotation errors, but they also show that it
is capable of adapting to over-rotation changes based on the rotated angle.

As hypothesized, there was no increase in time required to perform compensated rotations.
Instead, compensated tasks were actually 8.8% faster to perform (3.1 ± 1.4 seconds) than others
(3.4 ± 1.4 seconds). The difference was found to be statistically significant (U = 32758.5, p < .001).
This result holds for both slight (from 3.3 ± 2.3 seconds to 3.0 ± 1.7 seconds) and ample turns
(from 4.8 ± 2.3 seconds to 4.3 ± 2.0 seconds). The measurements exclude the overhead due to spo-
ken feedback, for which a fixed time of 1.4seconds is allotted. This result is in contrast to the
approaches that aim to reduce rotation errors using continuous sonification techniques [3], which
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instead cause the interaction to be slower. Regarding participant characteristics, we investigate
the effect of musical, smartphone, and NAT expertise, as well as participants’ age and visual im-
pairment onset on the rotation errors. We discover that visual impairment onset is the only factor
with statistically significant differences (U = 4067, p < .001). For participants visually impaired
since birth, the average rotation error (22.8◦ ± 20.5◦) was lower than for others (45.3◦ ± 30.8◦).
This factor persists even after compensation (U = 4067, p < .001), where participants with visual
impairment onset at birth had a lower rotation error (14.5◦ ± 18.8◦) than the other participants
(26.5◦ ± 25.8◦).

6 DISCUSSION AND LIMITATIONS

We discuss our main contributions: the analysis of rotations in real-world experiments and our
technique for reducing rotation errors. We also compare our approach to different interaction
approaches.

6.1 Rotation Analysis

Our previous work [5] shows that, despite accurate localization, NAT users incur problems because
that they cannot precisely follow the provided rotation instructions. These results were obtained
from real-world data collected in a specific environment: a shopping mall. It is worth wondering
whether the same problems occur in different environments. Indeed, in an environment with dif-
ferent architectural characteristics (e.g., narrower corridors), users might be able to rely on their
O&M abilities to compensate for the rotation errors. Our study shows that similar rotation er-
rors actually occur across different environments, including those with open spaces and ample
corridors (shopping mall, airport) and those with narrower corridors (hotel).

We highlight another phenomenon common to all environments: slight turns are more error
prone than ample ones. This was hinted in our previous work and other contributions for specific
environments [5, 21, 30]. We confirm this finding, providing even clearer results, on the observa-
tions from other three environments with different characteristics. Instead, the effect of partici-
pants’ characteristics on rotation errors is not consistent for all datasets. For example, participants
older than 45 years and those with high smartphone and NAT expertise had lower rotation errors
in the mall environment but not in others. Conversely, although the blindness onset age did not
have an effect in the mall environment, in our user study participants who were visually impaired
at birth had lower rotation errors both with and without compensation. Similarly, being assisted by
a guide dog reduced rotation errors in the wide airport environment but not in the museum. These
results indicate that participant characteristics may have interaction effects with other factors such
as environment characteristics and therefore need to be analyzed jointly, with more participants.

Another factor that was not investigated in this work is the impact of O&M training on rotation
errors. Prior work shows that higher O&M expertise can significantly reduce veering [23], and that
additional training to avoid veering can have lasting effects on participants. In our case, all partic-
ipants had medium to high O&M expertise, and the experiment had a short duration. Therefore,
we could not verify whether the same results apply to rotation errors.

6.2 Over-Rotation Compensation

The proposed approach was shown to effectively reduce rotation errors. In our experiment, such
errors were reduced from 30.1◦ to 18.8◦. However, even with over-rotation compensation, rotation
errors remain present in our results, and their magnitude, measured with actual users, is higher
than the average prediction error estimated on previous data (compare Figures 7(b) and 8(a)). This
suggests that the trained over-rotation prediction model does not completely adapt to our experi-
mental setting. This can be explained by the following two considerations.
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First, our prediction model was trained with data collected in a different experimental setting
than the one used to verify the model. Indeed, the data used for training, collected with participants
sitting on a swiveling chair, shows smaller over-rotation (20.65◦ ± 20.79◦) than the data used for
testing, which was collected with users standing (30.1 ± 20.8). An approach to better adapt the
over-rotation prediction model to the experimental setting could be to retrain the model with data
collected in similar conditions, or to use additional data from diverse datasets to better generalize
the model to diverse conditions. Nonetheless, even with the great difference between the training
and the testing data, and particularly with a much more challenging testing data, our model is still
able to greatly reduce rotation errors and perform better than the baseline approach.

Second, the model was trained with data from a small number of individuals, different from the
ones it was evaluated with. With a small number of participants, personal characteristics may have
a significant impact on data variability and therefore on the predictive power of the model trained
with such data. Indeed, our model, trained with data generated by a small number of participants,
did not perfectly adapt to experiments conducted by a diverse set of participants. To achieve a
more robust prediction, one possible approach is to create a training dataset containing data from
a higher number of diverse participants. Alternatively, model personalization [45] could be used
to better adapt to specific participants’ characteristics.

6.3 Different Interaction Approaches

The technique proposed to reduce rotation errors uses a very simple form of sonification: a sin-
gle impulsive sound. Clearly, continuous sonification techniques are possible [3] and were shown
to be capable of reducing rotation errors at the cost of additional rotation time. Instead, our ap-
proach reduces both rotation error and rotation time, which could be better suited to time-critical
tasks and situations in which audio feedback must be kept at a minimum. However, preliminary
analysis conducted in Ahmetovic et al. [3] also highlights that a single impulsive sound is less
pleasant for participants than continuous sonification techniques. Thus, we cannot conclude that
a single impulsive sound approach is better than the one based on continuous sonifications, nor
vice versa. Additional analysis is needed to evaluate the cognitive load associated with different
interaction techniques, particularly in presence of external noise [1]. Results presented here can
also contribute to improve the approach based on continuous sonification. Indeed, it has been
shown that the best results are achieved by pairing a continuous sonification approach with a sin-
gle impulsive sound as reinforcement feedback [3]. Thus, being able to anticipate the impulsive
sound to compensate for over-rotation can be effective also in the case of continuous sonification
approaches.

Although achieving better rotation accuracy is the main goal of the proposed technique, we
also observe that the act of rotating is intrinsically subject to approximation, so NATs should be
designed to take inaccurate rotations into consideration. One example is the veering correction
adopted in the airport environment [20], which limits the error caused by the frontal movement
after a wrong rotation. This sort of compensation mechanism occurs after the rotation and is
complementary to the technique proposed in this article, which aims at limiting the rotation error
itself.

7 CONCLUSION

We present a thorough investigation of rotation errors during turn-by-turn guidance for people
with VIB on four datasets collected in diverse environments. We show the presence of consistent
turn errors caused by over-rotation following the stop instruction and propose a method for lim-
iting such errors by predicting and compensating for the over-rotation. Our approach is trained
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and validated on existing data, and it is evaluated in a user study with 11 participants with VIB.
Although our approach successfully reduces rotation errors, some of the error remains.

As future work, we will explore whether training our model with datasets similar to the test-
ing condition can achieve even better results. We will also investigate personalization and active
learning to better adapt over-rotation prediction to user characteristics. In particular, active learn-
ing can automatically improve future predictions: each time our technique predicts over-rotation
and plays the stop instruction, it can measure the actual over-rotation and use it to retrain future
predictions. Similarly, we will consider environmental and contextual characteristics as features
to better adapt to other use cases. Another possibility is to integrate our approach with interac-
tion techniques that use continuous sonification to reduce rotation errors. We will evaluate our
approach and compare it to continuous sonification techniques both quantitatively in terms of ro-
tation time and error and qualitatively in terms of perceived cognitive load and user preferences.
We will also investigate how the O&M expertise level impacts rotation errors and whether specific
training can help offset such errors. Finally, we will investigate how diverse techniques perform
in different environment soundscapes, such as the presence of background traffic noise or voices.
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