
ZebraRecognizer: efficient and precise localization
of pedestrian crossings.

Dragan Ahmetovic∗, Cristian Bernareggi∗, Andrea Gerino∗ and Sergio Mascetti∗
∗University of Milan

{dragan.ahmetovic, cristian.bernareggi, andrea.gerino, sergio.mascetti}@unimi.it

Abstract—Autonomous mobility is a challenge for visually
impaired people. In the last years, a number of solutions have
been proposed in the scientific literature to support visually
impaired people during road crossing. In our previous work we
presented ZebraLocalizer a mobile application that detects zebra
crossings and guides the user to safely cross.

In this paper we present the ZebraRecognizer algorithm that
improves the detection module of our solution and that applies
innovative solutions in the field of zebra crossings recognition. The
major contribution resides in the fact that ZebraRecognizer recti-
fies the ground plane hence removing the projection distortion of
the extracted features. This leads to two major advantages: first,
it possible to compute the relative distance between the user and
the zebra crossing in meters. Second, the grouping and validation
criteria specifically designed for the rectified line segments are
much more effective, hence improving the accuracy of the
recognition. An additional contribution consists in a significantly
improved computation time. Indeed, ZebraRecognizer is 3 time
faster than our previous solution, thanks to the adoption of a
personalized version of the EDLines algorithm to detect the line
segments.

I. INTRODUCTION

In recent years mobile devices have shown their huge
potential in supporting people with disabilities. Indeed, since
these devices are accessible, a number of assistive technologies
have been proposed to support people with disabilities in
everyday activities. For example, thanks to screen reader soft-
ware (e.g., Apple’s “Voice Over”) smartphones and tablets are
accessible to visually impaired users. This renders it possible
to develop ad-hoc applications that use the device to collect
information from the environment (e.g., through the camera,
the GPS or the accelerometers) and provide it to the user in
an appropriate form (e.g., through audio information).

In this paper we focus on the problem of supporting
visually impaired users to identify and localize zebra crossings.
This problem is particularly relevant since blind and partially
sighted people meet a number of challenges in walking inde-
pendently without a guide. As shown in [9], [3], the main
difficulties are concerned with acquiring information about
the surrounding environment through tactile and kinesthetic
perception as well as through the auditory channel. Due to the
inability to localize distant objects, blind and partially sighted
people run into difficulty especially in crossing a road. An
experimental analysis shows that blind people wait at least
three times more than sighted ones before crossing a road
and that 6% of attempts are dangerous [4]. In an analogous
experiment, Schroeder et al. also remark that blind people did
not even try to find a zebra crossing [10].

To address this problem, solutions have been proposed
in the literature to recognize pedestrian crossings through a
smartphone camera and to guide the user. The first solution
(Stephen Se [11]) can recognize a zebra crossing only if the
image contains the whole pattern, not covered even partially
by objects (e.g. cars). A more efficient approach (Uddin et
al. [12]) is based on bipolarity segmentation (detect areas of
alternating black and white stripes) and projective invariant
validation (verify the cross ratio invariant between detected
stripes). This solution yields good results in terms of precision
and recall, although the experimental evaluation has been
conducted on a small image set (about 100), all with similar
illumination conditions. In [6], [7] Ivanchenko et al. propose
two techniques for detecting pedestrian crossings: the former
detects zebra crossings but does not compute their relative
position with respect to the user. The latter detects the “two
stripes” zebra crossings and adopts a rectification technique
that, while not described, seems to share the same idea as
our contribution. The solution we proposed previously [1]
computes the approximate relative position of the user with
respect to the zebra crossing. This information is then used to
compute audio cues for guiding the user to a safe position for
crossing and during actual crossing.

In this contribution we focus on the module that detects
zebra crossings and computes their relative position. We
propose the ZebraRecognizer algorithm (see Section IV) that
significantly improves existing solutions along two directions:
(a) ZebraRecognizer computes the position of the crossing
with respect to the user in meters and (b) ZebraRecognizer
significantly improves the performance in terms of accuracy
of recognition and computation time.

To obtain (a), ZebraRecognizer adopts a rectification phase
that removes the projection distortion from the zebra crossing,
hence making it possible to compute the relative position of the
crossing with high precision and in meters. This is achieved
through an innovative solution to compute the rectification
matrix (see Section III). The impact of this solution goes
beyond the aim of this paper as it is applicable in many cases
in which objects on the ground plane need to be rectified.

Concerning (b), the rectification phase makes it also pos-
sible to define more effective constraints to validate the candi-
date zebra crossing, hence significantly improving the accuracy
of the recognition. ZebraRecognizer is also about 3 time
faster than our previous solution thanks to the adoption of a
personalized version of the EDLines algorithm to compute the
line segments [2]. We experimentally show the performance
improvements in Section V.

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.443

2566

II. PROBLEM SPECIFICATION

In this paper we consider zebra crossings as defined by
Italian traffic regulations (see Figure 1a), however our solution
can be easily adapted to most definitions used worldwide.
A zebra crossing is described as a horizontal traffic sign
consisting in an alternating pattern of dark and light stripes. It
is composed by at least 2 light stripes and 1 dark stripe.

sh
o
rt e

d
g
e
s (5

0
cm

)

ground plane

light stripe

dark stripe

long edge (>250cm)

light stripe

(a) Zebra crossing pattern specifications (b) Zebra crossing

Fig. 1: Zebra crossing example and definition

The stripes are commonly rectangular and, less frequently,
in case of diagonal crossings, parallelograms. They are 50cm
thick and have a width of at least 250cm. The dark stripes are
of the same color of the underlying road while the light stripes
may be white or, in case of road works, yellow.

For the detection of zebra crossings, we rely on two data
sources available on off-the-shelf smartphones: video camera
and accelerometers. The former captures image frames that can
then be analyzed with computer vision techniques. The latter,
instead, detects the acceleration of the device, from which,
through sensor fusion techniques available on recent mobile
OS APIs, we extract the gravity acceletation component. This
information is used to compute the orientation of the device
with respect to the ground plane. Given these two data sources
and the estimated user’s height, we can compute the relative
position of the user with respect to the detected crossings.

Technically, the input of the ZebraRecognizer consists in
the user’s height h, an image i with height ih and width
iw and the gravity acceleration data represented as a three
dimensional unit vector a = 〈ax, ay, az〉. Its elements ax, ay
and az represent, respectively, the portion of the gravity that
is applied on x, y and z axes of the device (see Figure 3).

The output of the algorithm is an object representing the
most suitable detected zebra crossing, if any. The crossing lies
on the ground plane, with origin set in the position of the
device and it consists in an array of stripes, each defined by
its top and bottom segments and its color.

III. METRIC RECTIFICATION

One of the most innovative aspects of the solution proposed
in this paper is that it applies a rectification transformation to
the pedestrian crossing to remove the perspective distortion,
hence easing the validation of the geometrical constrains and
making it possible to precisely compute the relative position
of the crossing with respect to the user.

horizon

M'

A'
B'

C'
D'

p

Iw

Ih

(a) Square inside image

L A D M

N

s

h �
�y

�

z

x
(b) Reconstructed plane: Profile

x

y

A M

B

N

�
s

D

C
s

s

s�x

(c) Reconstructed plane: Top view

Fig. 2: Square A′B′C ′D′ inside the image and the correspond-
ing square ABCD on the reconstructed ground plane

The rectification matrix is calculated as the product of
two matrices: the affine rectification matrix and the metric
rectification matrix. In Section IV we show how the affine
rectification matrix can be computed by directly adapting
existing results to our pattern recognition problem. Vice versa,
in order to compute the metric rectification matrix we propose
a technique that, to the best of our knowledge, is original.
An important aspect of this technique is that it can be used
for the rectification of the ground plane in any case in which
the gravity acceleration applied on the mobile device and the
height of the device from the ground are known. Consequently
this technique can be used in many different contexts in which
mobile devices are involved and its field of application is much
broader than the crossing recognition, which is our focus.

Liebowitz and Zisserman ([8]) show how to compute a
metric rectification matrix given two pairs of lines in the image
that have the following properties in the reconstructed plane:
they lie on the ground plane, none of them is parallel to any of
the three others and both pairs are perpendicular. Examples are
provided in which the two pairs of lines are actually present
in the image and there is prior knowledge about the above
properties of the two pairs of lines. Our approach is different:
we first artificially craft these lines on the image in such a way
that the above properties hold. Then we apply the technique in
([8]). To craft the lines, we need the knowledge of the device’s
inclination with respect to the ground plane, the height of the
device from the ground plane and the camera angle of view. In
Section IV we show how to compute the first two parameters,
the last one is a constant (for a given camera).

Our technique works as follows: we ideally draw four
vertexes in the source image in a way that the projection
of these points in the reconstructed ground plane yields a
square ABCD with edge of length s (see Figure 2). Once
we have this square, the two pairs of lines are 〈AB,AD〉 and
〈AC,BD〉 and the technique proposed in ([8]) can be applied.

We call A′, B′, C ′, D′ the four points that we construct
in the image and that are projected on A,B,C and D,
respectively. We construct A′, B′, C ′ and D′ to force the
following constraints, implying that ABCD is a square:

2567

1) AB is parallel to CD;
2) AB and CD are perpendicular to AD;
3) |AD| = s;
4) |AB| = s;
5) |CD| = s.

To enforce 1), we draw A′B′ and C ′D′ parallel to the
horizon. For 2), we draw A′D′ on the line p perpendicular to
the horizon and passing through the center of the image M ′.

To enforce condition 3) we first draw A′ on the intersection
between p and the circle centered in the center of the image
with radius equal to half of the height of the image ih (see
Figure 2a). We compute D′ as follows. Consider Figure 2b
where h is the height of the device from the ground, α is
the inclination of the device and βx and βy are half the
horizontal and vertical camera angles respectively. Since we
know NL = h, ˆALN = π/2 and ˆLNA = α − βy , we can
easily compute |LA|. Then, |LD| = |LA|+ s while the angle
γ = α− atan(|LD|/h). Consequently we compute D′ as:

|M ′D′| = (sin(γ) · ih)/(2 · sin(βy))

Since condition 4) is analogous to condition 5), we only
show the enforcement of the former, conceptually similar to
condition 3). In this case we have the right triangle NAB
(see Figure 2c) in which |AB| = s and |NA| can be derived
since we know the width of the image iw, |AL| and |NL|.
Consequently we can compute angle δ = atan(s/|NA|) and
therefore we can derive |A′B′| as:

|A′B′| = (sin(δ) · iw)/(2 · sin(βx))

IV. THE ZebraRecognizer ALGORITHM

ZebraRecognizer is divided in 4 main steps, as shown
in Figure 3. “Image preprocessing” and “Rectification matrix
computation” can be run in parallel, and, when both results
are available, two steps follow: “Line segment detection” and
“Line segment grouping and validation”.

Rectification Matrix
Computation

Line Seg. Group.
& Validation

Image
Preprocessing

Detected
Crossing

Videocamera

Accelerometers

z
y

x

Line Segment
Detection

Fig. 3: Algorithm flowchart

A. Image preprocessing

In the image preprocessing step the image is prepared
to ease the following computations. The input is the image
captured by the camera while the output is the preprocessed
image that we call “the image” in the following. The pre-
processing consists in three main operations: first, the image
is converted to grayscale. This loss of color information

actually helps to detect crossings having differently colored
stripes. The second and third operations are respectively the
image resizing (“resolution” parameter, see Section V-A) and
gaussian blur filtering1. The purpose of this step is to reduce
execution time in the following stages of the algorithm and
smooth imperfections in the image to ease the detection of line
segments (see Section IV-C). Figure 4a shows an example of
the preprocessing step applied to Figure 1b.

(a) Preprocessing (b) Seg. detection

1

2 3

4
5 67

8

(c) Validation (d) Result

Fig. 4: Example of ZebraRecognizer applied to an image

B. Rectification matrix computation

The input of this step consists in the gravity acceleration
values and its goal is to compute a 3x3 “rectification matrix”.
While it could be possible to multiply this matrix to every point
of the ground plane in the image to remove the perspective
distortion, it is computationally inefficient. Hence this step
outputs the rectification matrix that, in the following steps, is
applied to few selected points representative of the crossing.

The rectification matrix is calculated as the product of
two matrices: the affine rectification matrix and the metric
rectification matrix. In ([8]) it is shown how to compute the
affine rectification matrix for a plane given its vanishing line.
In our case the vanishing line of the ground plane is the horizon
and we compute it from the gravity data as follows.

The gravity acceleration components ax, ay and az as
acquired by the device accelerometers are measured in g =
9.80665m/s2 and take values in [−1, 1]. Since the gravity
force is normal to the ground plane, these values represent
the sine of the inclination (with respect to the ground plane)
of the corresponding axes of the device. Hence, given an image
having width iw and height ih, captured by the camera with
respectively half horizontal and vertical angles of view βx and
βy , the inclination of the horizon on the screen is calculated
as θ = atan2(ax,−ay) and it passes through a point

p =

((
sin(θ) · az
sin(βx)

+ 1

)
· iw
2
,

(
cos(θ) · az
sin(βy)

+ 1

)
· ih
2

)

Therefore, the image’s horizon line’s equation is:

hl = sin(θ)x+ cos(θ)y − sin(θ) · px − cos(θ) · py
For the computation of the metric rectification matrix we use
the technique presented in Section III that requires as input
the height of the device. To estimate this value we assume

1The resizing uses pixel area relation interpolation and the gaussian filtering
parameters used are σ = 1.1 for sigma and k = 5 for kernel size.

2568

that the user is holding the device in a position like the one
depicted in Figure 2a in which the elbow is close to the hip
and the forearm has an inclination of about pi/6 with respect
to the ground plane. In our experiments with the users, this
is the natural position of almost every user. Also, we need to
know the height of the user hu (either estimated or asked to
the user during the setup stage). Considering the proportions
of the human body ([5]), on average the height at elbow is
he = 0.615 · hu and the forearm length is hf = 0.205 · hu.
Consequently, the device height from the ground is:

hd = he+ sin(π/6) · hf
Clearly the above computation is subject to some approxi-
mation. However, the error is practically not significant. For
example, considering a 175cm tall person we assume the
height of the device is 125cm. If the device is actually kept
at the height of the shoulders (142cm), a zebra crossing at a
distance of 2m is computed as being 233cm from the user.
This does not significantly affect, for example, the number of
steps required to reach the starting of the zebra crossing.

C. Line segments detection

The line segments detection step is a modified version of
the EDLines algorithm (Akinlar et al. [2]). The inputs of this
step are a grayscale image and the horizon. The output is an
array of detected segments in the image coordinate system.
Figure 4b shows the results of the line segment detection
algorithm applied to Figure 1b. Our implementation has three
main differences with respect to the original.

First, our technique ignores the portion of the image above
the horizon since no zebra crossings will ever be found there.
This approach is both useful to reduce the computation time
and exclude possible false positives in that area.

Second, in addition to gradient orientation, our solution
also computes the gradient direction of the detected segments.
This is a useful information in the following steps since the
direction of the gradient can differentiate between segments
on top and on the bottom of stripes.

The third difference between our solution and the EDLines
algorithm is that our technique also merges close segments.
Two segments having slope distance and spatial distance both
lower than specified thresholds are merged. The resulting
segment is the union of the two segments’ projections on the
line having the slope angle and intercept parameter calculated
as the weighted averages (based on segments’ lengths) of
the corresponding parameters of the lines on which the two
segments lay. This step is useful to join two or more portions
of a line segment that have been recognized as different line
segments due to minor imperfections in the image, noise,
flawed coloration of the stripes or objects between the observer
and stripes. See Figure 5 for an example.

D. Line segments grouping and validation

The aim of this step is to group the segments to form
candidate crossings and then to validate each group. To ease
the definition of the geometrical properties underlying group-
ing and validation, each segment is first rectified using the
rectification matrix. This makes it possible to straightforwardly

(a) Split segments (b) merged segments

Fig. 5: Segments split by an obstacle are merged

check geometrical properties (e.g., parallelism) and to compute
distances in meters. During the process, the set of segments
is re-organized into a set of crossings, each one characterized
by a set of stripes, that, in turn, are composed by a pair of
segments each. The output is the most relevant crossing.

Before grouping, the segments shorter than required are
pruned. In Figure 4c, segments 2 and 3 are removed due to
this criteria. The remaining segments are grouped based on
three criteria: “slope”, “horizontal overlapping”, and “gradient
orientation”. The idea behind the “slope” criteria is that the
segments in the same crossing are all parallel among them.
We use a hierarchical clustering technique to group segments
whose difference in orientation is smaller than a threshold.
Segments 5 and 6 in Figure 4c are excluded due to the “slope”
criteria. The same approach is used to check the “horizontal
overlapping” criteria that captures the fact that, in a crossing,
the projections of all segments on a line parallel to them
overlap. Segments 7 and 8 in Figure 4c have an overlap smaller
than the “overlap threshold” parameter (see Section V-A) and
are filtered out. With the “gradient orientation” criteria we
ensure that two consecutive segments in a group have opposite
gradient directions. Each resulting group is then structured into
stripes consisting in pairs of consecutive segments.

The stripes are then validated according to “color consis-
tency” and “width” principles. “Color consistency” validation
checks if each light (or dark) stripe has a color consis-
tently lighter (darker, respectively) than the average color
of the candidate crossing. The minimum difference between
the color of the stripe and the crossing is specified by the
“color consistency magnitude threshold” parameter (see Sec-
tion V-A). Thanks to “color consistency” validation, discolored
and cracked stripes as well as structures that are geometrically
similar to stripes but without consistent dark/light alternating
colors are discarded. “Width” validation checks whether each
rectified stripe is about 50cm wide. The stripe containing
segment 1 in Figure 4c is pruned due to this constraint.

During the grouping and validation phases, we prune the
groups containing less than minimum number of segments. In
most of our settings this value is set to 5, guaranteeing that
each crossing contains at least two white stripes.

In many cases either none or a single group is output by
the grouping and validation step. However, it is possible that
two or more groups are returned. This happens, for example,
when the camera is viewing two distinct crossings or a single
crossing is erroneously split in two parts. The last step of the
algorithm therefore chooses a single crossing that is likely to be
the most relevant for the user. We assume that the most relevant

2569

crossing has roughly the same direction as the user. Therefore,
we first check if any detected crossing has an orientation angle
within a threshold from the user’s orientation. If favorable
crossings are available, then all other crossings are discarded.
From the remaining crossings, the closest one to the user is
returned. In Figure 4d we show the rectified image of the
crossing detected starting from Figure 1b.

V. EXPERIMENTAL EVALUATION

In this section we report our experimental evaluation aimed
at assessing the performance of our solution both in terms of
computation time and reliability of the results. We also com-
pare ZebraRecognizer with our previous solution (presented in
[1]) using the same experimental setting, showing significant
improvements. A direct comparison with other solutions is
unfeasible because it is not possible to test other solutions
with our experimental setting due to the unavailability of the
implementations of previous solutions and, at the same time,
it is not possible to test our solution with the same test sets
used in previous results since they are not available. For a
direct comparison of our solution with future work, we make
our test set publicly available2. This is composed by a set of
videos and the corresponding accelerometer data recordings.

A. Experimental setting

For the evaluation we used a dataset of 16 videos for which
we also stored the frame-by-frame corresponding gravity data
derived from the accelerometers. Videos were recorded in
720× 1280 resolution at a framerate of 20 frames per second.
In total 7408 frames were captured, 4480 of which contain
zebra crossings while the remaining 2928 do not. Videos and
gravity measurements were captured on an iPad 2 device in
different illumination conditions (sun, rain and night).

We used a desktop pc for computationally intensive eval-
uations and a mobile device for evaluating the execution time
on target platform. The desktop pc runs Gentoo linux with
x86 64 3.12.13 kernel and openCV 2.4.6 on an Intel i5 2-core
(4-thread) cpu and has 8GB ram. The mobile platform is an
off-the-shelf iphone 5 smartphone.

Three indicators were evaluated: precision, recall and ex-
ecution time. The precision, calculated as the the ratio of the
correctly detected crossings and all the detected crossings,
measures the amount of false positives. A precision score of
1.0 means that each detection corresponds to a crossings in the
examined image, conversely a lower ratio implies that some
crossings were detected where none was present. The recall
metric is calculated as the ratio between the detected crossings
and all the correct crossings in the dataset. While a score of
1.0 means that all the crossings were correctly detected, lower
values indicate that some of the crossings were not. Given
the safety concerns for the navigation of visually impaired
users in a dangerous environment, we notice how anything
less than a perfect precision score is unacceptable, while a
high recall score, although important, is less critical. In the
following, unless differently stated, we report our results in
which the precision is always equal to one. The execution time
defines the average time (among all 7408 frames) needed to

2http://webmind.di.unimi.it/ZebraTestSet/

Parameter Min Default Max

Resolution 90 × 160 180 × 320 720 × 1280
Overlap length thres. 0 15 50

Color cons. mag. thres. 1 4 10

TABLE I: Most influential parameters and their values

run the ZebraRecognizer. Lower execution time allows higher
frame rates, increasing the responsiveness of the detection
with respect to the user’s movements. Also, it means that
the procedure is less computationally intensive, with a lower
impact on the battery life of the device.

While in our experiments we tuned all parameters, due to
page constraints, we only report here our results when varying
three of the most influential ones with respect to the considered
metrics (shown in Table I together with their minimum, maxi-
mum and default values). The “resolution” parameter specifies
the size of the image on which the detection is run. The
“overlap length threshold” defines the minimum overlap length
(in cm) required for segments belonging to the same group (see
Section IV-D). The “color consistency magnitude threshold”
defines the minimum difference in color intensity (value range
between 0 and 255) that a stripe must have with respect to the
whole crossing in order to be valid (see Section IV-D).

B. Experimental results

As expected, “resolution” significantly influences the exe-
cution time (See Figure 6a). This is due to the fact that the most
computationally intensive task, the line segment detection, has
a linear computational complexity with respect to the number
of pixels of the input image.

For what concerns the recall metric, with a very low
resolution (below 90 × 160) the features are hard to detect
and hence recall diminishes drastically. On the contrary, for
high resolutions (above 180 × 320) there is also a reduction
in recall due to the fact that noise and imperfections are more
visible and impair drastically the segment detection stage. This
behaviour can be offset by using a stronger smoothing during
the preprocessing step (see Section IV-A), however, at further
expense of the execution time. The best results can therefore be
achieved with a resolution of 180× 320 for ZebraRecognizer
and with 90× 160 for our previous solution.

Comparing the two solutions (see Figure 6a), we notice
that, at same resolution settings, ZebraRecognizer is 3 to
10 times faster. The maximum recall are 0.78 and 0.5 for
ZebraRecognizer and our previous solution, respectively. The
corresponding average execution times are about 12ms for
ZebraRecognizer on the desktop platform while the previous
one settled on a 7 times higher value (76ms). Lower execution
time with respect to the previous works is obtained thanks to
the usage of a faster line segment detection algorithm ([2]).
Concluding, ZebraRecognizer significantly improves both re-
call and execution time with respect to our previous solution.

For what concerns the computation time on the mobile plat-
form, with the settings that maximize recall, ZebraRecognizer
is 3 times more efficient than our previous solution (32ms and
87ms respectively). We suspect that the decrease in the gain of
ZebraRecognizer with respect to the desktop platform (from

2570

0

0.2

0.4

0.6

0.8

1

20 160 320 480 640 800 960 1120 1280
0

50

100

150

200

250

R
ec

al
l

E
xe

cu
ti
o
n
 t

im
e

(m
s)

Image resolution (height)

Recall previous solution
Recall ZebraRecognizer
Execution time previous solution
Execution time ZebraRecognizer

(a) Comparison with the previous solution

0.73

0.79

5 20 35 50

0.998

0.999

1.000

R
ec

al
l

Pr
ec

is
io

n

cm

0.74

0.75

0.76

0.77

0.78

Recall
Precision

(b) Overlap length threshold

0.71

0.72

0.73

0.74

0.75

0.78

1 2 3 4 5 6 7 8 910

0.998

0.999

1.000

R
ec

al
l

Pr
ec

is
io

n

color magnitude difference

0.77

0.76

Recall
Precision

(c) Color magnitude thresholds

Fig. 6: Results of experiments

7 to 3 times faster) is due to the fact that ZebraRecognizer
makes a larger use of floating point operations.

For “overlap length threshold” and “color consistency
magnitude threshold” parameters we have similar behaviors.
Indeed, increasing these two parameters, the grouping and
validation step filters out more candidate crossings. Hence, for
high values of these two parameters, we obtain better values
for the precision metric but worse results for the recall metric.
Numerically, for “overlap lengths threshold” lower than 15cm,
precision decreases (Figure 6b). We choose as default setting a
value of 15cm which yields 1.0 precision and recall of 0.78. As
for the “color consistency magnitude threshold” (Figure 6c),
values smaller than 4 yield some false positives, hence we
chose this value as default to guarantee precision equal to 1.
With this setting, the recall is 0.78.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented ZebraRecognizer, an algorithm
to detect and localize zebra crossings. The algorithm makes
use of data from both the camera and the accelerometers to
rectify the extracted features. This enhances the process of fea-
ture aggregation and validation of candidate zebra crossings.
The extensive experimental evaluation, conducted in different
illumination conditions (including sun, rain and night) shows
that ZebraRecognizer has zero false positives, hence never
erroneously reports a crossing when not visible. Also, the
algorithm has a significantly lower computation time and a
higher recall with respect to our previous solution. Lower
computation time results in a higher number of processed
frames per second, hence guaranteeing a better responsiveness
for the user, and a lower power consumption. Higher recall
ensures that more crossings are correctly recognized.

Following the revisors’ comments we intend to evaluate
the precision of the position calculation and the impact of
the occlusion of the stripes (e.g by vehicles or pedestrians).
We are also investigating simpler and possibly more precise
rectification techniques. As a future work we aim to embed
ZebraRecognizer into a mobile app that can guide a visually
impaired person towards the zebra crossing and during the ac-
tual crossing. For this goal it is necessary to devise a technique
to compute safe and short paths, a step that will benefit from
the position calculation capability of the ZebraRecognizer.
Also, we intend to investigate the user interface issues involved
in providing complex audio information to the user without
diverting his/her attention from the environment. Finally, as a

additional visual recognition problem, we are also working on
the recognition of traffic lights.

ACKNOWLEDGMENT

We wish to thank the anonymous reviewers for insightful
and detailed comments that were extremely helpful for the
improvement of our work.

REFERENCES

[1] Ahmetovic, D., Bernareggi, C., and Mascetti, S. Zebralocalizer:
identification and localization of pedestrian crossings. In Proc. of the
13th Int. Conf. on Human Computer Interaction with Mobile Devices
and Services. ACM, 2011.

[2] Akinlar, C. and Topal, C. Edlines: A real-time line segment detector
with a false detection control. Pattern Recognition Letters, 2011.

[3] Arditi, A., Holtzman, J.D., and Kosslyn, S.M. Mental imagery and
sensory experience in congenital blindness. In Neuropsychologia.
Elsevier, 1988.

[4] Guth, D., Ashmead, D., Long, R., Wall, R., and Ponchillia, P. Blind
and sighted pedestrians’ judgments of gaps in traffic at roundabouts.
Human Factors: The Journal of the Human Factors and Ergonomics
Society, 2005.

[5] Huston, R. Principles of biomechanics. CRC press, 2008.

[6] Ivanchenko, V., Coughlan, J., and Shen, H. Detecting and locating
crosswalks using a camera phone. In Computer Vision and Pattern
Recognition Workshop. IEEE, 2008.

[7] Ivanchenko, V., Coughlan, J., and Shen, H. Staying in the crosswalk: A
system for guiding visually impaired pedestrians at traffic intersections.
In Assist technol Res Ser. IOS, 2009.

[8] Liebowitz, D. and Zisserman, A. Metric rectification for perspective
images of planes. In Proc. of Computer Vision and Pattern Recognition.
IEEE, 1998.

[9] Passini, R. and Proulx, G. Way finding without vision: an experiment
with congenitally blind people. In Environment and behavior. Kluwer,
1988.

[10] Schroeder, B. J., Rouphail, N. M., and Emerson, R. S. W. Exploratory
analysis of crossing difficulties for blind and sighted pedestrians at
channelized turn lanes. Transportation Research Board of the National
Academies, 2007.

[11] Se, S. Zebra-crossing detection for the partially sighted. In Proc. of the
conference on Computer Vision and Pattern Recognition. IEEE, 2000.

[12] Uddin, M.S. and Shioyama, T. Detection of pedestrian crossing and
measurement of crossing length - an image-based navigational aid for
blind people. In Trans. on Intelligent Transportation Systems. IEEE,
2005.

2571

