
ZebraLocalizer: identification and localization of
pedestrian crossings

Dragan Ahmetovic
University of Milan
dragan.ahmetovic@

studenti.unimi.it

Cristian Bernareggi
University of Milan

cristian.bernareggi@unimi.it

Sergio Mascetti
University of Milan

sergio.mascetti@unimi.it

ABSTRACT
Independent mobility in unfamiliar environments is a sig-
nificant challenge for people with severe vision impairment.
Among other problems, one specific issue concerns the iden-
tification of those road signs which can be recognized by
sight only. In this paper we present ZebraLocalizer, an ap-
plication for mobile devices that identifies zebra crossings
and guides the user towards them. Two main problems are
discussed in this contribution: the identification and local-
ization of the crosswalks, performed by processing data ac-
quired both from the camera and the accelerometers, and
the design of an interaction paradigm specifically addressed
to blind users. Experimental results, conducted both on a
dataset of images and with blind users, validate the applica-
bility of the proposed solution.

1. INTRODUCTION
Although mobile devices pose new problems to disabled users,
they also provide new exciting opportunities. Indeed, on one
side, new accessibility issues arise in the use of these de-
vices; for example, there are difficulties related to the inter-
action based on touch-screens. However, on the other side,
as these problems are being alleviated, for example by the
use of screen readers, it becomes clear that mobile devices
can support new assistive technologies that cannot be im-
plemented on standard devices i.e., desktops and laptops.
This is due to two main factors. Firstly, mobile devices
can be used on the move, and hence they can support the
user in a number of situations in which it is not practical to
rely on a standard device. Secondly, many mobile devices
are equipped with hardware sensors, like GPS receivers, ac-
celerometers, and gyroscopes, that can be used to acquire
information about the user’s context and that are not gener-
ally available on standard computers.

In this paper we focus on the problem of supporting visually
impaired users to identify and localize zebra crossings, that
are one particular type of crosswalk characterized by a reg-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

ular pattern of light parallel stripes1. The common problem
of the existing solutions is that, even if the zebra crossing
is correctly identified, no information is provided about the
relative position of the user with respect to the zebra cross-
ing [5, 8, 11, 10]. Consequently, none of the existing solu-
tions is capable of guiding the user towards the crosswalk.
Two difficulties arise while addressing this problem: (a) to
compute the relative position of the user with respect to the
zebra crossing and, (b) to define an effective user interac-
tion paradigm capable of correctly conveying the alignment
information to the blind users.

In order to tackle problems (a) and (b) mentioned above,
we developed ZebraRecognizer and ZebraLocalizer, respec-
tively. ZebraRecognizer is a software library that, by pro-
cessing images, identifies zebra crossings and computes the
relative position between the observer and the zebra cross-
ing. ZebraLocalizer is an iPhone prototype application that
acquires images from the camera, gives them in input to
ZebraRecognizer and implements the interaction paradigm
that enables blind users to identify a crosswalk, align to the
best crossing position and safely cross the road. Note that,
iPhone applications are accessible to visually impaired users
through VoiceOver, a screen reader natively available in the
iOS platforms. In a nutshell, the visually impaired user can
touch the screen to explore the interface by speech, and can
touch twice to activate an interface object (e.g., by touching
an icon twice, the corresponding application is run). Hence,
thanks to VoiceOver, the users are able to select and execute
ZebraLocalizer as well as to perform the operations made
available by its user interface (e.g. start/stop zebra recogni-
tion, have speech messages repeated, etc.).

The main contributions, with respect to the state of the art,
are the following:

• differently from existing solutions, that only acquire data
from the camera, ZebraRecognizer also uses data from the
accelerometers to improve the recognition performance
and to provide more accurate information about the rel-
ative position of the zebra crossing;

• ZebraLocalizer not only identifies the zebra crossings, but
it also provides information that guide the user towards
and over the zebra crossing.

1 In the following we use the terms “zebra crossing” and “cross-
walk” interchangeably

1

ZebraRecognizer has been designed with three main objec-
tives: first, it should provide no false positive, as this could
be hazardous for the user; second, it should have a low num-
ber of false negatives, hence correctly recognizing a zebra
crossing most of the times; third, it should be efficient, in
order to be capable of processing images acquired at a high
frame rate from the camera. The objective of ZebraLocalizer
is to provide helpful information about the relative position
of the user with respect to the zebra crossing without pro-
viding too much information that would be confusing for the
user. In order to evaluate if our solution achieves the above
objectives, we conducted both automated experiments per-
formed using a dataset of pictures and a human-driven eval-
uation performed with 5 blind users supported by a mobile
device in a real world scenario. Our experimental results
show that ZebraRecognizer and ZebraLocalizer achieve all
of the above objectives. In particular, our results give evi-
dence that ZebraLocalizer can effectively guide the user to-
wards and over the zebra crossing.

The paper is organized as follows. Section 2 presents the
related work, and in particular the existing solutions to the
problem of zebra crossing identification. Section 3 first shows
the technical description of the problem and then describes
the recognition technique adopted in ZebraRecognizer that
is based on image processing and spatial reasoning with data
acquired from the accelerometers. In Section 4 ZebraLocal-
izer is described, while Section 5 presents the results of the
experiments. Section 6 concludes the paper and highlights
some future research directions.

2. RELATED WORK
Independent mobility in unfamiliar environments is a sig-
nificant challenge for people with severe vision impairment.
The main difficulties derive from the inability to efficiently
obtain a holistic mental mapping of the surrounding area,
while navigating. Such a mapping can be straightforwardly
obtained by sighted individuals who can gather detailed in-
formation about close and distant objects through the vi-
sual channel. Instead, blind or visually impaired people can
understand global features of an unknown environment by
combining at conceptual level haptic information about ob-
jects in the immediate surroundings, acquired via tactile and
kinesthetic perception (e.g. by touching objects with a white
cane), and audio information about distant objects and events
(e.g. moving cars). As shown in [2], nonvisual understand-
ing of the environment is far more ineffective and inefficient
as well as potentially dangerous than scanning the surround-
ings by sight.

In order to make independent mobility for sight impaired
effective, efficient and safe, research in assistive technol-
ogy has addressed two major problems: to localize the po-
sition and orientation of the sight impaired person, and to
acquire and convey information about surrounding objects
(e.g. type, color, distance with respect to the observer, etc.).
In this paper we tackle the latter problem. A widely used
method to make objects detectable relies on RFID tagging.
Among other solutions, Fukasawa et al. [7] use RFID tags
for a nonvisual guiding system in railway stations. Alter-

natively, objects can be tagged by visual markers, which
are recognizable through a camera. For example, Chan et
al. [4] propose an indoor wayfinding system for visually im-
paired based on color markers placed on relevant elements
(doors, stairs, etc.). Marked objects can be easily recog-
nized, nonetheless the environment must be properly adapted
and tags can be unwittingly damaged thus making nonvisual
navigation unsafe.

The solutions based on RFID or color markers require that
specialized physical objects are placed in the environment.
This is not the case when the problem of object recognition
is solved through computer vision techniques not applied to
specifically adapted environments. Some solutions in this
class aim at recognizing a broad class of objects by combin-
ing text reading (OCR), barcode reading, and other computer
vision techniques. For example, the Looktel application is a
comprehensive platform, specifically designed for visually
impaired users, that recognizes many types of objects (e.g.
doors, text labels, etc.) [9]. The Google Goggles applica-
tion2 uses a similar approach to extract information from an
image and use it to perform a web search. To the best of our
knowledge, none of these applications is capable of recog-
nizing crosswalks.

Other solutions based on computer vision are specialized for
the recognition of a single class of objects. Angin et al. [3]
developed a system which performs fast recognition of traf-
fic lights by exploiting the computational power of cloud
computing. Unlike the work in [3], our solution aims to
provide the user with real-time information about crosswalk
position, therefore computation based on cloud computing
cannot be exploited because of the delay due to network la-
tency.

The zebra crossing recognition problem was first addressed
by Stephen Se [8]. This solution can differentiate between
zebra crossings and similar patterns that are sloped with re-
spect to the ground plane (e.g., staircases). However, as ob-
served by Uddin et al. [11], the solution proposed in [8] suf-
fers from performance issues. In order to address this prob-
lem, Uddin et al. propose a more efficient detection algo-
rithm based on bipolarity feature check and projective in-
variant. This work was extended in a later paper by Uddin
et al. [10] that presents a technique also supporting the com-
putation of the zebra crossing length. As recognized in [11],
the techniques proposed in [11] and [10] can fail to recog-
nize a crosswalk in case the zebra crossing is partially oc-
cluded, for example due to a car passing by. Vice versa, the
recognition technique proposed in our paper can recognize
a zebra crossing also in case of partial occlusion. Further-
more, ZebraLocalizer also guarantees that a crosswalk can
be recognized in case the zebra crossing is totally occluded
for a short timespan.

Ivanchenko et al. propose two techniques for crosswalk recog-
nition: one is specific for zebra crossings [5], the other ad-
dresses the problem of detecting a different type of cross-
walks, the two-stripes crossings [6]. In [5] the presence

2 http://www.google.com/mobile/goggles/

2

http://www.google.com/mobile/goggles/

of the crosswalk is announced to the user through simple
acoustic signals. According to the experimental results pre-
sented in [5], this technique is reliable and efficient. How-
ever we suspect that the reliability of the method proposed
by Ivanchenko et al. relies on the assumption that the device
is kept in a precise position (portrait or landscape). This
may not always be the case as it cannot be excluded that a
visually impaired user accidentally rotates the device while
walking. Vice versa, in our technique we use the informa-
tion acquired through the accelerometers to render our tech-
nique rotation independent in the sense that the result of the
recognition technique is not affected by the orientation of the
device. The idea to use data acquired though the accelerom-
eters to enhance the recognition was first adopted in [6] to
recognize two-stripes crossings. In this solution, the user is
informed about the presence of the crossing through acous-
tic signals coupled with vocal feedback notifying the user’s
lateral orientation with respect to the crossing. In our solu-
tion we apply a similar idea in the case of zebra crossings
and we extend it by providing the user with three pieces of
information: the lateral shift, the frontal distance and the ro-
tation. The challenge, addressed by ZebraLocalizer, is to
provide this information without distracting the user with
overwhelming audio feedback.

To conclude, our solution improves the existing work in three
directions. First, ZebraRecognizer relies on the accelerome-
ter data to improve the performance both in terms of compu-
tation time and accuracy of the result. Second, our solution
provides accurate information about the position and orien-
tation of the sight impaired person with respect to the zebra
crossing. Third, our solution introduces a novel feature con-
cerning the human interaction paradigm: the user is not only
informed about the existence of a crosswalk, but also guided
towards it through speech messages that are carefully de-
signed not to distract the user in the hazardous task of cross-
ing a road.

3. THE ZebraRecognizer LIBRARY
Different road markings are used worldwide to identify pedes-
trian crossings. Despite this variety, the particular type of
crosswalk called “zebra crossing” is probably the most com-
mon. Although a universally accepted definition for zebra
crossings does not exist, many of the currently adopted ze-
bra crossing standards are very similar. In this paper we use
the definition provided by the Italian law [1] and we believe
that our solution can be easily adapted to other standards.

A zebra crossing consists in a set of white stripes, generally
painted on a dark background (see Figure 1). In this paper
it is convenient to also define as “stripes” the gaps between
two consecutive stripes. In this view, each stripe is a rect-
angle with a uniform light or dark color, having width of at
least 250cm and height of exactly3 50cm. The long edges
of two adjacent stripes are overlapping. Each crosswalk is
composed by at least three consecutive stripes with alternat-
ing color, at least two of which are white stripes. The aim
of ZebraRecognizer is to recognize the zebra crossings that
3 Note that, according to some existing standards, the height of the
dark stripes can be less than the height of the white stripes.

have the long side of the stripes roughly perpendicular to the
observer. Thanks to the regularity of this structure, an ana-
lytical recognition technique can be applied. In this section
we describe the algorithm implemented in ZebraRecognizer
that is composed of five main steps: horizon computation,
feature extraction, line segment analysis, stripe analysis and
computation of relative position. In this section we describe
each step in detail.

Figure 1. Zebra crossing example

The algorithm takes in input a gray-scale image and the val-
ues of the 3D accelerometers. The output contains a boolean
value, indicating whether a crosswalk is recognized in the
picture. If this is the case, the output also contains the infor-
mation regarding the alignment of the observer with respect
to the zebra crossing, described in details in Section 3.5.

3.1 Horizon computation
In the first step of the algorithm, the data acquired through
the accelerometers is used to compute the position of the
horizon with respect to the input image (see Figure 2). The
computed horizon is used during the following stages and al-
lows our algorithm to have the following fundamental prop-
erties:

• The feature search space is limited to the semi-plane be-
low the horizon and to the roughly horizontal lines, hence
reducing the computation time and limiting the possibility
of false positive results;

• Parallel lines are recognized with high precision since,
in perspective geometry, two parallel lines lying on the
ground plane are either parallel to the horizon or they meet
on the horizon;

• The relative position of the crosswalk with respect to the
user is computed in order to allow the alignment of the
user with respect to the crossing.

Figure 2. The horizon, as it is computed by ZebraLocalizer.

3

3.2 Feature extraction
In the considered object recognition problem, the features
that we are interested to detect are the straight lines repre-
senting the long edges of each stripe. For this reason, in
the second step, the image is processed to detect and isolate
straight line segments. This is performed in three sub-steps.

2.a) The first sub-step is the line segment detection. For
this purpose a modified version of the Line Segment De-
tector (LSD) algorithm [12] is used. The implemented al-
gorithm differs with respect to the one proposed in [12]: it
ignores both the points above the horizon and the line seg-
ments whose angle with respect to the horizon is bigger than
π/6 (we recall that we are only interested in the stripes that
are roughly perpendicular to the observer). Figure 3 shows
the result of the original LSD algorithm compared with the
result of our modified version.

(a) Original LSD (b) Modified LSD (the
dotted line represents the
horizon)

Figure 3. Extraction of line segments (represented in white or black).

2.b) The second sub-step consists in merging segments that
approximately lie on the same line and whose distance is be-
low a given threshold value. This is useful because the LSD
procedure may recognize parts of the same line segment as
individual line segments due to noise in the image, impre-
cise coloration of the stripes or objects between the stripes
and the observer (e.g.: a pole positioned between the user
and the stripe). Similarly, in this sub-step we deal with the
line segments that are approximately parallel and very close
to each other: in this case we merge them into a single seg-
ment if they have the same gradient orientation or we drop
both line segments otherwise. Figure 4 shows the result of
the application of this sub-step.

2.c) In the last sub-step we drop the line-segments whose
length is below a threshold value. Indeed, since we are in-
terested in the recognition of the long edges of each stripe,
dropping short segments does not discard any useful feature.

3.3 Line segments analysis
In the third step of the algorithm, the line segments are ana-
lyzed in order to group them into sets, each one representing
a potential crosswalk. Since each zebra crossing is com-
posed by at least two white stripes, a set of line segments
that contains less than four elements cannot correspond to

(a) Result after step 2.a (b) Result after step 2.b

Figure 4. Line segments merging.

a crosswalk. For this reason, after each of the following
sub-steps, the groups containing less than four elements are
pruned.

3.a) As observed above, the long edges of the stripes are par-
allel. For this reason, the line segments are grouped accord-
ing to their slope. The computation is based on the obser-
vation that, in projective geometry, two parallel lines laying
on the ground plane are either parallel to the horizon or they
meet on the horizon. Exploiting this property, the identifica-
tion of the parallelism among line segments is conceptually
straightforward. Figure 5(a) shows two groups of line seg-
ments, the line segments belonging to one group are colored
in white the others in black.

3.b) In the second sub-step, each group is partitioned into
blocks according to the distances among the line segments.
The idea is to exploit two geometrical properties of cross-
walks: the height of the stripes is constant and the centers of
the stripes lie on the same line. The former property can be
checked by ordering the line segments according to their dis-
tance from the observer and then iteratively computing the
distances between pairs of consecutive line segments. Since
the crosswalk is observed in perspective geometry, the height
of stripes must decrease as the considered pairs are farther
from the observer. We empirically observed that the direct
evaluation of the latter property is more involved. Indeed,
the fact that stripes can be partially covered by obstructions
(e.g. a car passing by) or not totally included in the picture
prevents the LSD algorithm from recognizing the entire line
segment. For this reason, our algorithm has been designed to
tolerate the case in which the line segments are not perfectly
aligned and to only exclude from the group the line seg-
ments whose horizontal distance from the group barycenter
is significant. Figure 5(b) shows two groups of line segments
grouped according to their distances. The group represented
in black will be pruned as it contains two line segments only.

3.c) One obvious property of the line segments correspond-
ing to a crosswalk is that, considering them in their order
from the observer, the gradient of two consecutive elements
must have an opposite sign. The last sub-step checks if this
property holds and, if this is not the case, partitions the group
accordingly.

4

(a) Grouping accord-
ing to parallelism.

(b) Grouping according
to distance.

Figure 5. Grouping of line segments.

3.4 Stripes analysis
During the stripe analysis step, each set of line segments is
processed in order to prune from the set the elements that
are recognized as not representing a crosswalk. This step
is conceptually different from the previous one as line seg-
ments are not considered in pairs, but in groups of 3 (or 4)
elements, representing 2 consecutive stripes (or 3 consecu-
tive stripes, respectively). If, at the end of this step, a set still
contains at least four elements, then it can be safely regarded
as a crosswalk. For the validation to be positive, the fol-
lowing two criteria must be simultaneously satisfied: color
consistency and cross ratio.

Color consistency aims to capture the difference in the color
between a stripe and the background. Intuitively the dark
(light) stripes should be darker (lighter, respectively) than
the average color of the background. We compute it as fol-
lows: first, considering some sample points, we compute the
average (avg), minimum (min) and maximum (max) color
intensity of the half-plane below the horizon (i.e., the back-
ground). Then, again considering some sample points, we
compute the average color intensity inside a stripe. If the
color intensity of a stripe is within a threshold range from the
min in case of light stripes ormax in case of dark stripes the
stripe is considered valid. Note that this approach to color
consistency is preferable with respect to the absolute color
computation because it is independent of the actual color of
stripes which may be affected by lighting conditions.

The cross ratio is a projective invariant (a ratio preserved by
the projective transformations) of an ordered quadruple of
distinct points which lie on a straight line L. Considering
the points A,B,C,D depicted in Figure 6, it holds that any
choice of origin or scale does not influence the value of

AC ·BD
BC ·AD

Since the stripes of a crosswalk have all the same width, it
holds that

AC ·BD
BC ·AD

=
4
3

The ZebraRecognizer library checks, for any set of three
consecutive stripes, if the cross ratio holds, also taking into
account that some approximation, expressed in terms of a
threshold value, should be tolerated.

Figure 6. Cross ratio

3.5 Computation of relative position
If a crosswalk is identified, the last step of algorithm com-
putes its relative position with respect to the observer. The
position is characterized by three values: the rotation angle,
the lateral shift, and the distance.

The rotation angle is the angle the user needs to rotate in
order to be orthogonal to the crosswalk, in the sense that
the shoulders of the user are be parallel to the longer edge
of the stripes. This value corresponds to the slope of the
stripe closest to the observer with respect to the horizon. The
lateral shift represents the movement that is required by the
user to be at the center of the visible part of the crosswalk.
This value is computed as the distance, in pixels and along
the x-axis (i.e., the horizon), between the center of the line
segments closest to the observer and the center of the picture.
Finally, the distance between the user and the crosswalk is
computed as the distance, in pixel, between the horizon and
the line segment closest to the user. Given this value, and
knowing the calibration information of the camera, as well as
the position of the device (i.e., its orientation and height from
the ground), it is possible to estimate the ground distance, in
meters, between the user and the center of the line segment
closer to the user.

4. THE ZebraLocalizer APPLICATION
ZebraLocalizer is an application developed for iOS and specif-
ically optimized and tested with iPhone 4. This device was
chosen both because it embeds a suitable hardware equip-
ment (i.e. high performance processor, high quality camera
and accelerometers) and since it natively makes available ac-
cessibility features required for blind users (i.e. the screen
reader called “Voice Over”).

Conceptually, ZebraLocalizer performs a simple task: it col-
lects the input from the camera and the accelerometers, pro-
vides these information to ZebraRecognizer and returns the
output to the user. However, during the preliminary evalu-
ation of the application performed with one blind user, we
realized that there is a number of issues that should be con-
sidered. In particular, in this section we describe the solu-
tions implemented in ZebraLocalizer to tackle the problems
related to the interaction paradigm and the data management.

5

(a) Crosswalk is recog-
nized

(b) Crosswalk is not rec-
ognized

(c) Hazardous path (d) Safe path

Figure 7. Problems arising when instructing the user to rotate, (Figures (a) and (b)) or when guiding the user to the crosswalk (Figures (c) and (d)).

4.1 The interaction paradigm
The interaction paradigm of an assistive technology like Ze-
braLocalizer should take into account two main issues. First,
a blind person who is walking autonomously, aided by a
white cane, usually focuses the attention both on haptic stim-
uli (e.g. touching the wall to go ahead along a sidewalk)
and on sound signals or speech messages from the surround-
ing environment. Particularly, the auditive stimuli are es-
sential for blind people to acquire information about distant
objects and potentially dangerous events (e.g. an approach-
ing car). Therefore, the interaction paradigm provided by
a guiding aid such as ZebraLocalizer, should not divert the
user’s attention from haptic and especially auditive stimuli
and it should also aim not to increase the mental workload
with overmuch information.

The second issue concerns how to safely guide a blind user
from the position at which a crosswalk is detected to the
best position to start crossing (in front of the zebra cross-
ing, roughly at the midpoint of the first stripe) and then to
the other side of the crossing. Several problems can arise,
consider the following as an example. Assume the zebra
crossing is on the left side of the user at a certain distance
(see Figure 7(a)); if the user rotates before getting closer to
the crosswalk, the zebra crossing will be out of the cam-
era field of view, and hence ZebraLocalizer will not be able
to detect the crosswalk anymore (see Figure 7(b)). In the
same situation, if the user takes the shortest path between
her/his current position and the crosswalk, she/he has to get
off the sidewalk, which can be potentially hazardous (see
Figure 7(c)). The safe path is to first move along the side-
walk until the user gets closer to the zebra crossing, then
rotate and, finally, shift on the left or right to get to a good
position to start crossing (see Figure 7(d)).

To address the two problems above, ZebraLocalizer informs
the user through very short speech messages, which can be
easily retained in the user’s short-term memory. These mes-
sages are read only when the “alignment status” changes:
Table 1 defines the possible statuses and the corresponding
messages that are read when the status is reached. The idea
is that, when the crosswalk is identified and the user is still
far from it, then ZebraLocalizer informs the user to pro-
ceed walking (see the second problem highlighted above)

telling the user the position of the stripes (ahead, on the left
or on the right). Otherwise, when the user is close to the
zebra crossing, the alignment information should also con-
sider the lateral shift, in order to find a good crossing posi-
tion. Note that, when the user is crossing, it is particularly
important to have short messages as they need to be quickly
decoded and interpreted by the user, who needs to decide in
a short time the action to take (e.g. to go straight on, to ro-
tate slightly while crossing over a zebra crossing, etc.). In
addition, each message is preceeded by a vibrational effect
coupled with a very short sound, which aim to temporarily
have the user’s attention focused on the upcoming message.
In case a user misses a message, she/he can have the latest
message read again by touching the screen device. Thanks
to this approach, ZebraLocalizer does not divert the user’s
attention from the surrounding environment, except for very
short time slots.

Another problem related to the interaction paradigm is that
the position in which the device is held by the user may dra-
matically affect the results of the recognition. For example,
if the user is close to the crosswalk and holds the device
pointing to the horizon the stripes closer to the user are out
of the camera field of view, hence ZebraRecognizer returns
a relatively high distance between the user and the closest
stripe. Analogously, if the user is far from a zebra cross-
ing and points the device camera down on the ground, it is
likely that no stripe is identified. For this reason, there are
two additional messages read by ZebraLocalizer: “point de-
vice downwards” and “point device ahead”. The former is
read when ZebraLocalizer detects that the device is pointing
towards the horizon and that the distance from the closest
stripe rapidly increases between two consecutive executions
of ZebraRecognizer. Indeed, this generally means that the
stripe closer to the user that was visible in the previous exe-
cution of ZebraRecognizer is not visible anymore, probably
due to the fact that the user has moved close to it without ro-
tating the device towards the ground. The latter message is
read when no crosswalk is detected and the device is point-
ing towards the ground.

4.2 The data management
From the data management point of view, ZebraLocalizer
needs to take into account that the information acquired from

6

Crosswalk Distance δ Angle α Shift s Message
detected (in meters) (in degrees) (in pixels)

No - - - “zebra not detected”
Yes δ > 1.5 |α| ≤ 10 - “proceed, zebra ahead”
Yes δ > 1.5 α > 10 - “proceed, zebra on the right”
Yes δ > 1.5 α < −10 - “proceed, zebra on the left”
Yes δ ≤ 1.5 |α| ≤ 10 |s| ≤ 50 “you can cross”
Yes δ ≤ 1.5 |α| ≤ 10 s > 50 “shift left”
Yes δ ≤ 1.5 |α| ≤ 10 s < −50 “shift right”
Yes δ ≤ 1.5 α > 10 - “rotate right”
Yes δ ≤ 1.5 α < −10 - “rotate left”

Table 1. Messages defined in the ZebraLocalizer application

the sensors are subject to noise, that should be properly fil-
tered. Indeed, the instantaneous value of the accelerometers
is not always accurate as it may be affected by the movement
of the user. Our current implementation of ZebraLocalizer
uses a moving average filter to attenuate this problem.

The issue is more involved when the data acquired through
the camera are taken into account. Indeed, although Ze-
braRecognizer has a high detection rate (see Section 5.2),
it can happen that even if the user does not significantly
move, two consecutive executions of the recognition algo-
rithm return significantly different results. Consider the case
in which one user is pointing a crosswalk and a car passes
over it: this can result in the stripes suddenly disappear-
ing. According to the interaction paradigm defined above,
the consequence is that ZebraLocalizer reads two messages
to the user (one when the zebra crossing disappears and an-
other when it is visible again).

In this case the filtering of the information is more compli-
cated due to two main reasons. First, the number of samples
(i.e., the results of the recognition) is limited to around ten
per seconds, while the sample rate of the hardware sensors
like the accelerometers is much higher. Second, the aggrega-
tion function is more complicated: each sample is composed
by several values, and a different aggregation function is re-
quired for each of them. In our current solution ZebraLocal-
izer runs the recognition library a number of times and then
aggregates the result before providing it to the user. Clearly,
the higher is the number of executions, the better is the pre-
cision of the result, but the delay is higher. In our current
implementation, we run the recognition procedure 3 times
before aggregating the results and giving it to the user.

In practice, our solution is working properly, as it is accurate
in the computation of the horizon (see, for example, Fig-
ure 2) and it is capable of frequently computing useful in-
formation that can actually guide the user towards the zebra
crossings (see Section 5.3). Nevertheless, we believe that the
data management technique can still be improved along two
main directions: first, we shall evaluate the impact of differ-
ent filtering technique, like the Kalman filter. Second, we are
planning to combine the accelerometers information with the
data acquired from other sensors, like the gyroscopes. This
would be particularly interesting as it would make it possi-

ble to recognize the user’s movements (e.g, walking straight,
rotating, etc.). This information can be used, after a zebra
crossing has been identified, to estimate the relative position
of the same crosswalk after a period of time. Clearly, this
knowledge can then be used to enhance both the recogni-
tion procedure and the aggregation of different recognition
results.

5. EXPERIMENTAL RESULTS
In this section we report the results of our experimental eval-
uation. We conducted one set of tests, using a computer-
based quantitative measurement, to measure the performance
of the recognition technique while, in order to evaluate the
usability of the ZebraLocalizer application, we conducted
a preliminary qualitative evaluation of usability with blind
users.

5.1 Experimental setting
The quantitative evaluation was performed by repeatedly run-
ning the ZebraRecognizer library on two sample sets of im-
ages, each one containing 200 items. One set contains pic-
tures of crosswalks, while the other contains pictures of com-
mon urban environments (e.g. tramlines, shadows of trees
and buildings, etc.) without zebra crossings. It should be
observed that the latter set of picture was specifically de-
signed in order to contain pictures of items that could be
erroneously recognized as zebra crossings, like tramlines,
stairs. etc. Also, both set of images were taken is differ-
ent light and weather conditions, including the natural light
of a bright sunny day, a cloudy rainy day and the artificial
light in the night. All the images in the test sets were cap-
tured by the iPhone 4 camera with the low quality streaming
video presets corresponding to a 192x144 resolution. These
pictures were taken with an application we specifically de-
veloped that inserts the values of the accelerometers as a
comment within the picture file. This makes it possible to
use the accelerometer data during the recognition phase of
the tests conducted on a PC platform.

The quantitative experiments aimed at achieving four major
goals:

1. To prove that the recognition is accurate, in the sense that
if there are crosswalks in the picture, they are properly
recognized, otherwise no crosswalk is detected. Note that,

7

for the algorithm to guarantee safe road crossing, the num-
ber of false positives must be equal to zero, namely areas
on the road background which are not crosswalks must
not be erroneously recognized as crosswalks.

2. To evaluate the time efficiency in order to show that the al-
gorithm can be embedded in applications running on off-
the-shelf smartphones.

3. To show that the use of data acquired through accelerom-
eters highly improves both the accuracy and the efficiency
of crosswalk recognition.

4. To tune the internal parameters of the application.

In this section we show the results obtained for the first three
points above. To evaluate how much accurate is the algo-
rithm (point 1. above), we use two indicators: precision and
recall. Precision is the ratio between the number of prop-
erly recognized crosswalks and the number of all the de-
tected crosswalks, including erroneously detected ones. Re-
call is the ratio between the number of properly recognized
crosswalks and the number of all pictures containing cross-
walks. The time efficiency (point 2. above) was expressed as
the average execution time per image in milliseconds. The
tests were performed both on an iPhone 4 and on an IBM
ThinkPad T60 with Gentoo Linux, with a 1,6GHz Intel Core
solo processor and 4GB of RAM. For what concerns the im-
pact of the accelerometer data (point 3. above), we imple-
mented a variation of the ZebraRecognizer library that does
not compute the horizon and that does not rely on accelerom-
eter information.

The qualitative test was conducted by five blind users and
aims to assess the usability of the ZebraLocalizer application
in real life scenarios. Users were required to perform two
tasks while walking on the sidewalk along a road, about 20
meters far from a crosswalk, aided by a white cane and by
ZebraLocalizer. The first task required to detect a crosswalk
located in front of the user. In this case the blind users were
told to move as close as possible to the middle of the zebra
crossing and then cross the road. In the second task users
were told to walk straight on the sidewalk and cross the road
in the middle of the first zebra crossing located on the left
side. Note that, in both cases it was not possible for the
blind user to predict the position of the crosswalk by any
other mean than ZebraLocalizer. In particular, in both cases
there was no physical marker on the sidewalk to denote the
presence of the zebra crossing. In the latter case, the zebra
crossing was not even located near a crossroads. Also note
that none of the users have ever explored the area where the
test took place.

For what concerns the experimental environment, we chose
two zebra crossings in different light conditions. The former,
in front of the user, was partially covered by the shadow of
a building; the latter, on the left side of the user, was al-
most totally covered by the shadow of tree branches. Note
that, ragged edges of the shadow of tree branches may affect
the recall of zebra crossing recognition. The evaluation was
conducted in a partly cloudy day with weak light conditions.

The following indicators were measured: (a) the user posi-
tion and orientation before crossing the road, (b) the distance
from the crosswalk at which ZebraLocalizer performs the
first successful recognition, and (c) number of shift/rotation
messages given to the user before finding the best crossing
point. User position and orientation suggest how suitable are
the alignment information given to the user; the distance at
which a successful recognition is achieved helps the design-
ers define use cases and, finally, the number of alignment
messages measures the effort required to find the crossing
point.

5.2 Quantitative evaluation
Our experiments highlight that two parameters have a ma-
jor impact on precision and recall. One parameter, called
color distance is used during the stripe analysis (see Sec-
tion 3.4) to define the minimum allowed difference between
the average color of a given stripe and the average image
color. The other parameter called width expansion is a mul-
tiplier coefficient used during the line segment analysis (see
Section 3.3) to predict the next stripe’s maximum allowed
width given the width of the last recognized stripe.

Figure 8 shows that the recall monotonically decreases with
increasing values of color distance. Vice versa, when this
parameter is set to values smaller than 0.05 some false pos-
itive results are returned. Consequently, it is necessary to
define a trade-off between precision and recall. Given that
the aim of the ZebraRecognizer is to have no false positive,
we used 0.075 as the default value for this parameters so that
no false positive results are returned while about 70% of the
zebra crossings are actually recognized. Analogous consid-
erations were conducted for the width expansion parameter.

In our experiments it emerges that the size of the image
is the parameter that most significantly affects the compu-
tation time. Figures 8(d) and 8(c) show the computation
time and the recall, respectively, for different values of the
scaling factor parameter that defines how much the original
192x144 image should be scaled before processing. Inde-
pendently from the value of this parameter the precision is
equal to 1. As expected, both the recall and the execution
time monotonically decrease with smaller images. However,
while the execution time decreases almost linearly between
60% and 10%, the recall is not significantly affected for val-
ues of scaling factor between 60% and 30%, while it rapidly
decreases for smaller values. Vice versa, for larger images,
i.e, scaling factor larger than 60% (not represented in the
figures), the recall does not significantly improves, while the
computation time still grows almost linearly. Figure 8(d)
shows the computation time both on a PC and on an iPhone
4. It can be observed that the computation on the iPhone
4 is about one order of magnitude slower but the recogni-
tion process can still be performed in less than 0.1 seconds.
Thanks to this analysis, it is possible to conclude that a good
trade-off between computation time and recall is obtained
with values of scaling factor between 60% and 30%. In our
implementation of ZebraLocalizer, we had the objective to
process about ten images per second and hence we chose to
use 50% as the default value for scaling factor.

8

(a) Recall (b) Precision (c) Recall (d) Execution time

Figure 8. Impact of the parameters color distance (Figures (a) and (b)) and scaling factor (Figures (c) and (d).

One set of experiments we conducted is devoted to mea-
sure the improvement introduced in the recognition process
by use of the accelerometers. To achieve this, we divided
the dataset of images representing zebra crossings into those
taken in an almost portrait position and the others (called
“sloped” in the following). Our results (see Figure 9) show
that the use of accelerometers increases the recall by more
than 100% with sloped images. Moreover, the accelerome-
ter data can reduce the computation time of about 25%, for
both sloped and portrait pictures.

(a) Recall (b) Execution time

Figure 9. Impact of accelerometer data on recall and execution time.

5.3 Qualitative evaluation
The usability test mostly confirmed the expectations of the
designers and it also provided further suggestions for future
development. The results can be grouped according to three
stages for each task: approaching, while the user has de-
tected a crosswalk and is getting close to the start point of
the first stripe, aligning, while the user is rotating or shift-
ing in order to find the best crossing position and crossing,
while the user is walking over the zebra crossing.

In the approaching stage, all the users were able to detect
the zebra crossing in both tasks. We observed that the recog-
nition distance ranges from about seven meters in task 1 to
about four meters in task 2. In the first task, two users re-
marked the difficulty to rotate the device toward the first
stripe of the zebra crossing aided by the discrete audio feed-
back of ZebraLocalizer. Both of them reported that a contin-
uous sound signal would probably better inform the the user
about the correct device rotation. In the second task, one user
run into difficulty while walking along the sidewalk search-
ing with the device for the zebra crossing. Indeed, this user
relied on the wall on his right to orientate. However, while
searching for the zebra crossing, the user was induce to ro-

tate on his left, hence moving away from wall and loosing
his orientation. After incurring into this problem twice, the
user autonomously learned to point the device for the detec-
tion on his left side while continuing to walk along the wall.

After the aligning stage, all the users were in a safe cross-
ing position, less than one meter far from the first stripe and
in front of the zebra crossing. In task 1, four users out of
five were roughly at the midpoint of the first stripe before
crossing. One of them started crossing at the right half of
the first stripe. In task 2, three users out of five were at the
left half of the first stripe before crossing, while two of them
started crossing roughly at the midpoint. In task 2, four users
corrected more than three times and up to seven times their
position while rotating to align with the zebra crossing. This
is due to the fact that the users rotated left or right more than
needed. This suggests to provide the user with more detailed
speech messages during the rotation movement. Two users
suggested to provide more detailed messages about rotation,
for example indicating how much the user needs to rotate,
expressing this value in degrees or as on the clock face.

As for the measurement of the mental workload required in
the aligning stage, it can be noted that, on average, four lat-
eral shift messages are required in task 2 while only three
messages are required in task 1. The difference between the
two tasks is even larger for what concerns the time required
to reach the correct crossing point: 10 seconds are required,
on average, in task 1, while about 40 seconds are necessary
on average, in task 2. The different results between task 1
and task 2 suggest that rotating and shifting turns out to be
more imprecise and attention demanding than left/right shift-
ing only.

For the crossing stage to be effective, the user must always
be walking over the stripes and reach the opposite side of
the road in a short time. All the users were able to cross the
road (about 6m wide) in a short time ranging from three to
five seconds. Nonetheless, one of them crossed the road very
close to the right end of the stripes. While crossing he was
holding the device on his left side hence he did not receive
any information about the stripes on his right side. This sug-
gests that the user should be better informed, before using
ZebraLocalizer, on how to hold the device while crossing.
One more remark from the users concerns the speech mes-
sages while crossing. Most of them (4 out of 5) pointed out

9

that, although the messages are short, during the crossing
phase (i.e., an hazardous situation) they are still a possible
source of distraction. One possible solution could be to have
even shorter speech messages or audio clues such as those
provided by audible traffic lights.

As a final remark, it is worth noting that all the users were
able to detect the crosswalks both in task 1 and 2 in a rather
short time, if compared to the average walking time of a
blind person aided by a white cane, and that all of them
started crossing in a safe position and crossed the road on
the crosswalk.

6. CONCLUSIONS AND FUTURE WORKS
Based on the experimental results illustrated in Section 5, we
can draw some conclusions concerning both the effective-
ness and efficiency of the recognition algorithm and the us-
ability of the ZebraLocalizer application. Firstly, the recog-
nition algorithm does not incur into false positives and rec-
ognizes most crosswalks. Also, the computation time is low
enough that it is possible to execute the current implementa-
tion on off-the-shelf mobile devices.

The usability test gives evidence that, thanks to ZebraLocal-
izer, users can independently, quickly and safely discover
crosswalks both on their left/right side and along their walk-
ing direction. The use of ZebraLocalizer is immediate, as
all the users only took a few seconds to learn how to interact
with this application. In addition, users can easily follow the
instructions to be guided towards a good crossing position.

The test also highlighted two problems that we intend to
solve: first, the user’s rotation necessary to align with a cross-
walk on his/her side is a task that requires some time and
effort; second, the application should be even less intrusive
when the user is crossing. We plan to alleviate the former
problem by exploiting data acquired through more special-
ized sensors (e.g. gyroscopes) that, as mentioned in Sec-
tion 4.2, can also be used to improve the data management
involved in ZebraLocalizer. For what concerns the latter
problem, we are investigating the following possible solu-
tion: the user notifies the application (through a simple ges-
ture on the screen, like a double tap) when he/she starts
crossing. While in “crossing mode”, the application can
switch to audio clues and can only give information about
the presence of the zebra crossing.

We are also planning to further develop ZebraLocalizer along
other two directions. First, it would be interesting to con-
sider the extension of the user interface to support speech
input that can increase the number of hands-free input com-
mands the user can give to the device, thus improving the
application usability. Second, we are considering to com-
bine the recognition technique with other data retrieved from
web-oriented services (e.g. geo-localized data sources). The
idea is that each time a zebra crossing is identified, this geo-
localized information can be shared with the other users.
This knowledge can then be exploited, by a different user,
to enhance the recognition procedure.

Acknowledgments
The authors would like to thanks the anonymous reviewers
for their valuable suggestions, Andrea Gerino for his indis-
pensable help with the iOS implementation and all the vol-
unteer users involved in the experiments.

7. REFERENCES
1. Art. 145, d.p.r. 16/12/1993, n. 495, in materia di

‘regolamento di esecuzione e di attuazione del nuovo
codice della strada’; relativo all’ art. 40 c.s.

2. J. D. Holtzman A. Arditi and S. M. Kosslyn. Mental
imagery and sensor experience in congenital blindness.
In Neuropsychologia, 1988.

3. P. Angin, B. Bhargava, and S. Helal. A mobile-cloud
collaborative traffic lights detector for blind navigation.
In In Proc. of 11th Int. Conf. on Mobile Data
Management, pages 396–401. IEEE, 2010.

4. K. Y. Chan, R. Manduchi, and J. Coughlan. Accessible
spaces: navigating through a marked environment with
a camera phone. In Proc. of the 9th international ACM
SIGACCESS conference on Computers and
accessibility, Assets ’07, pages 229–230, New York,
NY, USA, 2007. ACM.

5. V. Ivanchenko, J. Coughlan, and H. Shen. Detecting
and locating crosswalks using a camera phone. In
Computer Vision and Pattern Recognition Workshop,
pages 1–8. IEEE, 2008.

6. V. Ivanchenko, J. Coughlan, and H. Shen. Staying in
the crosswalk: A system for guiding visually impaired
pedestrians at traffic intersections. In Assistive
technology research series, 2009.

7. S. Myojo N. Fukasawa, H. Matsubara and R. Tsuchiya.
Guiding passengers in railway stations by ubiquitous
computing technologies. In Proc. of IASTED
Human-Computer Interaction. ACM, 2005.

8. S. Se. Zebra-crossing detection for the partially sighted.
In Proc. of the conference on Computer Vision and
Pattern Recognition. IEEE, 2000.

9. J. Sudol, O. Dialameh, C. Blanchard, and T. Dorcey.
Looktel, a comprehensive platform for computer-aided
visual assistance. In Proc. of Computer Vision and
Pattern Recognition Workshops (CVPRW). IEEE, 2010.

10. M.S. Uddin and T. Shioyama. Detection of pedestrian
crossing and measurement of crossing length - an
image-based navigational aid for blind people. In Trans.
on Intelligent Transportation Systems. IEEE, 2005.

11. M.S. Uddin and T. Shioyama. Detection of pedestrian
crossing using bipolarity feature-an image-based
technique. In Tran. on Intelligent Transportation
Systems. IEEE, 2005.

12. Rafael Grompone von Gioi, Jeremie Jakubowicz,
Jean-Michel Morel, and Gregory Randall. Lsd: A fast
line segment detector with a false detection control.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32:722–732, 2010.

10

	1 Introduction
	2 Related work
	3 The ZebraRecognizer library
	3.1 Horizon computation
	3.2 Feature extraction
	3.3 Line segments analysis
	3.4 Stripes analysis
	3.5 Computation of relative position

	4 The ZebraLocalizer application
	4.1 The interaction paradigm
	4.2 The data management

	5 Experimental results
	5.1 Experimental setting
	5.2 Quantitative evaluation
	5.3 Qualitative evaluation

	6 Conclusions and future works
	7 REFERENCES

